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STRASSEN, from 30,000 feet 
*Overlook of the Bay Area. Photo taken in Mission Peak Regional Preserve, Fremont, CA. Summer 2014. 

 

Volker Strassen  

(Born in 1936, aged 80) 
Original Strassen Paper (1969) 



8 multiplications, 8 additions 7 multiplications, 22 additions 

Direct Computation Strassen’s Algorithm 

*Strassen, Volker. "Gaussian elimination is not optimal." Numerische Mathematik 13, no. 4 (1969): 354-356. 

 

One-level Strassen’s Algorithm (In theory) 



• One-level Strassen (1+14.3% speedup) 

 8 multiplications → 7 multiplications ; 

• Two-level Strassen (1+30.6% speedup) 

 64 multiplications → 49 multiplications; 

• d-level Strassen (n3/n2.803 speedup) 

 8d  multiplications → 7d multiplications; 

 

 

 

Multi-level Strassen’s Algorithm (In theory) 
M0 := (A00+A11)(B00+B11); 

M1 := (A10+A11)B00; 

M2 := A00(B01–B11); 

M3 := A11(B10–B00); 

M4 := (A00+A01)B11; 

M5 := (A10–A00)(B00+B01); 

M6 := (A01–A11)(B10+B11); 

C00 += M0 + M3 – M4 + M6 

C01 += M2 + M4  

C10 += M1 + M3 

C11 += M0  – M1 + M2 + M5  
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Strassen’s Algorithm (In practice) 
M0 := (A00+A11)(B00+B11); 

M1 := (A10+A11)B00; 
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Strassen’s Algorithm (In practice) 

• One-level Strassen (1+14.3% speedup) 

 7 multiplications + 22 additions; 

• Two-level Strassen (1+30.6% speedup) 

 49 multiplications + 344 additions; 

• d-level Strassen (n3/n2.803 speedup) 

 Numerical unstable; Not achievable 
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To achieve practical high performance 
of Strassen’s algorithm…... 

Our 

Implementations 

Matrix Size 

Matrix Shape 

Parallelism 

Conventional 

Implementations 

Must be square 

Must be large 

No Additional  

Workspace 
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Matrix Size 

Matrix Shape 

Parallelism 

To achieve practical high performance 
of Strassen’s algorithm…... 

Can be data parallelism  

Conventional 

Implementations 
Our 

Implementations 

Must be square 

Must be large 

Usually task parallelism  

No Additional  

Workspace 



Outline 

• Standard Matrix-matrix multiplication 

• Strassen’s Algorithm Reloaded 

• Theoretical Model and Analysis 

• Performance Experiments 

• Conclusion 

 

 



Level-3 BLAS Matrix-Matrix Multiplication 

(GEMM) 
• (General) matrix-matrix multiplication (GEMM) is 

supported in the level-3 BLAS* interface as 

 

 

• Ignoring transa and transb, GEMM computes 

 

 

• We consider the simplified version of GEMM 

*Dongarra, Jack J., et al. "A set of level 3 basic linear algebra subprograms."ACM Transactions on Mathematical Software (TOMS) 16.1 (1990): 1-17. 

 



State-of-the-art GEMM in BLIS 

• BLAS-like Library Instantiation Software (BLIS) is a portable framework for 

instantiating BLAS-like dense linear algebra libraries. 
 

 

• BLIS provides a refactoring of GotoBLAS algorithm (best-known approach) to 

implement GEMM. 

 

 

• GEMM implementation in BLIS has 6-layers of loops. The outer 5 loops are 

written in C. The inner-most loop (micro-kernel) is written in assembly for high 

performance. 

 Partition matrices into smaller blocks to fit into the different memory hierarchy. 

 The order of these loops is designed to utilize the cache reuse rate. 

• BLIS opens the black box of GEMM, leading to many applications built on BLIS. 

Field Van Zee, and Robert van de Geijn. “BLIS: A Framework for Rapidly Instantiating BLAS Functionality." ACM TOMS 41.3 

(2015): 14. 

 

 

 Chenhan D. Yu, *Jianyu Huang, Woody Austin, Bo Xiao, and George Biros. "Performance optimization for the k-nearest neighbors kernel on 

x86 architectures." In SC’15, p. 7. ACM, 2015. 

 *Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn. “Strassen’s Algorithm Reloaded.” In submission to SC’16. 

 Devin Matthews, Field Van Zee, and Robert van de Geijn. “High-Performance Tensor Contraction without BLAS.” In submission to SC’16 

 

 

 

 

Kazushige Goto, and Robert van de Geijn. "High-performance implementation of the level-3 BLAS." ACM TOMS 35.1 (2008): 4. 

Kazushige Goto, and Robert van de Geijn. "Anatomy of high-performance matrix multiplication." ACM TOMS 34.3 (2008): 12. 
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 Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn. “Strassen’s Algorithm Reloaded.” In SC’16. 

Devin Matthews. “High-Performance Tensor Contraction without BLAS.”,  arXiv:1607.00291 

Paul Springer, Paolo Bientinesi. “Design of a High-performance GEMM-like Tensor-Tensor Multiplication”, arXiv:1607.00145  

 

 

 

 

Field Van Zee, and Robert van de Geijn. “BLIS: A Framework for Rapidly Instantiating BLAS Functionality." ACM TOMS 41.3 

(2015): 14. 

 

 

Kazushige Goto, and Robert van de Geijn. "High-performance implementation of the level-3 BLAS." ACM TOMS 35.1 (2008): 4. 

Kazushige Goto, and Robert van de Geijn. "Anatomy of high-performance matrix multiplication." ACM TOMS 34.3 (2008): 12. 

 

 

 



*Field G. Van Zee, and Tyler M. Smith. “Implementing high-performance 

complex matrix multiplication." In ACM Transactions on Mathematical 

Software (TOMS), accepted pending modifications. 

  

 

GotoBLAS algorithm for GEMM in BLIS 
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GotoBLAS algorithm for GEMM in BLIS 

*Field G. Van Zee, and Tyler M. Smith. “Implementing high-performance 

complex matrix multiplication." In ACM Transactions on Mathematical 

Software (TOMS), accepted pending modifications. 
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One-level Strassen’s Algorithm Reloaded 

M0 := a(A00+A11)(B00+B11); 
M1 := a(A10+A11)B00; 

M2 := aA00(B01–B11); 
M3 := aA11(B10–B00); 
M4 := a(A00+A01)B11; 
M5 := a(A10–A00)(B00+B01); 
M6 := a(A01–A11)(B10+B11); 
C00 += M0 + M3 – M4 + M6 

C01 += M2 + M4  
C10 += M1 + M3 

C11 += M0  – M1 + M2 + M5  
 
 
 
 

 

M0 := a(A00+A11)(B00+B11);   C00 += M0; C11 += M0;   
M1 := a(A10+A11)B00;                C10 += M1; C11  –= M1;  
M2 := aA00(B01–B11);                 C01 += M2; C11 += M2;  
M3 := aA11(B10–B00);                 C00 += M3; C10 += M3;  
M4 := a(A00+A01)B11;                C01 += M4; C00  –= M4;  
M5 := a(A10–A00)(B00+B01);    C11 += M5;  
M6 := a(A01–A11)(B10+B11);    C00 += M6;  
 
 
 
 
 

   M := a(X+Y)(V+W);                     C +=M;       D +=M;  

M  := a(X+dY)(V+eW);             C += g0M;  D += g1M; 
g0, g1,d,e  {-1, 0, 1}. General operation for one-level Strassen: 



M := a(X+dY)(V+eW);                     C += g0M; D += g1M;  
g0, g1,d,e  {-1, 0, 1}. 

High-performance implementation of the general operation? 



M := a(X+dY)(V+eW);        C += g0M; D += g1M;   
 g0, g1,d,e  {-1, 0, 1}. 

*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn. 

“Strassen’s Algorithm Reloaded.” In SC’16.  
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“Strassen’s Algorithm Reloaded.” In SC’16.  
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Two-level Strassen’s Algorithm Reloaded 



Two-level Strassen’s Algorithm Reloaded 

(Continue) 

      M := a(X0+d1X1+d2X2+d3X3)(V+e1V1+e2V2+e3V3);                                             C0 += g0M;                C1 += g1M;                    C2 += g2M;                     C3 += g3M; 

 

      gi,di,ei  {-1, 0, 1}. 

General operation for two-level Strassen: 

M :=  a(X0+X1+X2+X3)(V+V1+V2+V3);                                                                    C0 += M;                  C1 += M;                       C2 += M;                           C3 += M; 



Additional Levels of Strassen Reloaded 

• The general operation of one-level Strassen: 

 

 

• The general operation of two-level Strassen: 

 

 

 

• The general operation needed to integrate k levels of 

Strassen is given by 

M := a(X+dY)(V+eW);        C += g0M; D += g1M;  
g0, g1,d,e  {-1, 0, 1}. 

M := a(X0+d1X1+d2X2+d3X3)(V+e1V1+e2V2+e3V3); 
C0 += g0M; C1 += g1M; C2 += g2M; C3 += g3M; 

 gi,di,ei  {-1, 0, 1}. 



Building blocks 

• Integrate the addition of multiple 

matrices Vt into 
• A routine for packing Bp into  

 written in C/Intel intrinsics 

 

 

• A routine for packing Ai into  
 written in C/Intel intrinsics 

 

 

• A micro-kernel for updating an 

mR×nR submatrix of C.  
 written in SIMD assembly (AVX, FMA, 

AVX512, etc) 

 

• Integrate the addition of multiple 

matrices Xs into  

 

• Integrate the update of multiple 

submatrices of  C. 

 

 

BLIS framework Adapted to general operation 



Variations on a theme 

• Naïve Strassen 

 A traditional implementation with temporary 

buffers. 

• AB Strassen 

 Integrate the addition of matrices into     and      . 

• ABC Strassen 

 Integrate the addition of matrices into     and      . 

 Integrate the update of multiple submatrices of C  

in the micro-kernel. 



Parallelization 

*Tyler M. Smith, Robert Van De Geijn, Mikhail Smelyanskiy, Jeff R. Hammond, and 

Field G. Van Zee. "Anatomy of high-performance many-threaded matrix multiplication." 

In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, pp. 

1049-1059. IEEE, 2014. 
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• 3rd loop (along mC direction) 

 

 

 

 

• 2nd loop (along nR direction) 

 

 

 

• both 3rd and 2nd loop 
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Performance Model 

• Performance Metric 

 

 

• Total Time Breakdown 

 

Arithmetic 

Operations 
Memory 

Operations 



Arithmetic Operations 

• DGEMM 
 No extra additions 

 

• One-level Strassen (ABC, AB, Naïve) 
  7 submatrix multiplications 

  5 extra additions of submatrices of A and B 

  12 extra additions of submatrices of C 

 

• Two-level Strassen (ABC, AB, Naïve) 
  49 submatrix multiplications 

  95 extra additions of submatrices of A and B 

  154 extra additions of submatrices of C 

Submatrix 

multiplication 

Extra additions with 

submatrices of A, B, C, 

respectively 

M0 := a(A00+A11)(B00+B11); C00 += M0; C11 += M0;   
M1 := a(A10+A11)B00;              C10 += M1; C11  –= M1;  
M2 := aA00(B01–B11);               C01 += M2; C11 += M2;  
M3 := aA11(B10–B00);               C00 += M3; C10 += M3;  
M4 := a(A00+A01)B11;              C01 += M4; C00  –= M4;  
M5 := a(A10–A00)(B00+B01);  C11 += M5;  
M6 := a(A01–A11)(B10+B11);  C00 += M6;  
 
 
 
 
 

 



Memory Operations 

• DGEMM 

 

• One-level 

 ABC Strassen 

 

 AB Strassen 

 

 Naïve Strassen 

 

• Two-level 

 ABC Strassen 

 

 AB Strassen 

 

 Naïve Strassen 

 



Modeled and Actual Performance 

on Single Core 



Modeled Performance Actual Performance 

Observation (Square Matrices) 



Modeled Performance Actual Performance 

Observation (Square Matrices) 



Modeled Performance Actual Performance 

Observation (Square Matrices) 



Modeled Performance Actual Performance 

Observation (Square Matrices) 



Modeled Performance Actual Performance 

Observation (Square Matrices) 



Modeled Performance Actual Performance 

26.0% 

13.1% 

Observation (Square Matrices) 

• One-level Strassen (1+14.3% speedup) 

 8 multiplications → 7 multiplications; 

• Two-level Strassen (1+30.6% speedup) 

 64 multiplications → 49 multiplications; 

 

 

 

Theoretical Speedup over DGEMM 



• Both one-level and two-level 

 For small square matrices, ABC 
Strassen outperforms AB 
Strassen 

 For larger square matrices, this 
trend reverses 

• Reason 

 ABC Strassen avoids storing M 
(M resides in the register) 

 ABC Strassen increases the 
number of times for updating 
submatrices of C 

Observation (Square Matrices) 



1 

+= 1 

micro-kernel 

Update Cij  
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main memory 

5th loop around micro-kernel 
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micro-kernel 

mR 
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L1 cache 
registers 
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2nd loop around micro-kernel 
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mC 
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mR 

L2 cache 

Pack Xi + dYi→ Ai 

~ 

4th loop around micro-kernel 

+= 

kC 
Yp Wp Dj 

kC 

Xp Vp Cj 

Bp 

~ 

L3 cache 

Pack Vp + eWp → Bp 

~ 

+= 
nC nC 

5th loop around micro-kernel 

Y W Dj 

X Vj Cj 

nC nC 

main memory 



• Both one-level and two-level 

 For small square matrices, ABC 
Strassen outperforms AB 
Strassen 

 For larger square matrices, this 
trend reverses 

• Reason 

 ABC Strassen avoids storing M 
(M resides in the register) 

 ABC Strassen increases the 
number of times for updating 
submatrices of C 

Observation (Square Matrices) 



• What is Rank-k update? 

Observation (Rank-k Update) 

k 

n 

n 

m 
m 



• Importance of Rank-k update 

Observation (Rank-k Update) 

Blocked LU with partial pivoting (getrf) 

A21 

A12 

A22 



• Importance of Rank-k update 

Observation (Rank-k Update) 

A21 

A12 

A22 += × 



Modeled Performance Actual Performance 

Observation (Rank-k Update) 
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Observation (Rank-k Update) 
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Modeled Performance Actual Performance 

Observation (Rank-k Update) 



Modeled Performance Actual Performance 

Observation (Rank-k Update) 



Modeled Performance Actual Performance 

Observation (Rank-k Update) 

• Reason: 

ABC Strassen avoids forming the temporary matrix M 

explicitly in the memory (M resides in register), 

especially important when m, n >> k. 
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Single Node Experiment 
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Many-core Experiment 



Intel® Xeon Phi™ coprocessor (KNC)   



Distributed Memory Experiment 
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To achieve practical high performance 
of Strassen’s algorithm…... 

Matrix Size 

Matrix Shape 

Parallelism Can be data parallelism  

Conventional 

Implementations 
Our 

Implementations 

Must be square 

Must be large 

Usually task parallelism  

No Additional  

Workspace 
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