
Strassen’s Algorithm Reloaded

Salt Lake City, UT

November 16th, 2016

Jianyu Huang, Tyler M. Smith,

Greg M. Henry, Robert A. van de Geijn

The University of Texas at Austin, Intel

STRASSEN, from 30,000 feet
*Overlook of the Bay Area. Photo taken in Mission Peak Regional Preserve, Fremont, CA. Summer 2014.

Volker Strassen

(Born in 1936, aged 80)
Original Strassen Paper (1969)

8 multiplications, 8 additions 7 multiplications, 22 additions

Direct Computation Strassen’s Algorithm

*Strassen, Volker. "Gaussian elimination is not optimal." Numerische Mathematik 13, no. 4 (1969): 354-356.

One-level Strassen’s Algorithm (In theory)

• One-level Strassen (1+14.3% speedup)

 8 multiplications → 7 multiplications ;

• Two-level Strassen (1+30.6% speedup)

 64 multiplications → 49 multiplications;

• d-level Strassen (n3/n2.803 speedup)

 8d multiplications → 7d multiplications;

Multi-level Strassen’s Algorithm (In theory)
M0 := (A00+A11)(B00+B11);

M1 := (A10+A11)B00;

M2 := A00(B01–B11);

M3 := A11(B10–B00);

M4 := (A00+A01)B11;

M5 := (A10–A00)(B00+B01);

M6 := (A01–A11)(B10+B11);

C00 += M0 + M3 – M4 + M6

C01 += M2 + M4

C10 += M1 + M3

C11 += M0 – M1 + M2 + M5

Multi-level Strassen’s Algorithm (In theory)
M0 := (A00+A11)(B00+B11);

M1 := (A10+A11)B00;

M2 := A00(B01–B11);

M3 := A11(B10–B00);

M4 := (A00+A01)B11;

M5 := (A10–A00)(B00+B01);

M6 := (A01–A11)(B10+B11);

C00 += M0 + M3 – M4 + M6

C01 += M2 + M4

C10 += M1 + M3

C11 += M0 – M1 + M2 + M5

• One-level Strassen (1+14.3% speedup)

 8 multiplications → 7 multiplications ;

• Two-level Strassen (1+30.6% speedup)

 64 multiplications → 49 multiplications;

• d-level Strassen (n3/n2.803 speedup)

 8d multiplications → 7d multiplications;

Strassen’s Algorithm (In practice)
M0 := (A00+A11)(B00+B11);

M1 := (A10+A11)B00;

M2 := A00(B01–B11);

M3 := A11(B10–B00);

M4 := (A00+A01)B11;

M5 := (A10–A00)(B00+B01);

M6 := (A01–A11)(B10+B11);

C00 += M0 + M3 – M4 + M6

C01 += M2 + M4

C10 += M1 + M3

C11 += M0 – M1 + M2 + M5

M0 := (A00+A11)(B00+B11);

M1 := (A10+A11)B00;

M2 := A00(B01–B11);

M3 := A11(B10–B00);

M4 := (A00+A01)B11;

M5 := (A10–A00)(B00+B01);

M6 := (A01–A11)(B10+B11);

C00 += M0 + M3 – M4 + M6

C01 += M2 + M4

C10 += M1 + M3

C11 += M0 – M1 + M2 + M5

Strassen’s Algorithm (In practice)

• One-level Strassen (1+14.3% speedup)

 7 multiplications + 22 additions;

• Two-level Strassen (1+30.6% speedup)

 49 multiplications + 344 additions;

• d-level Strassen (n3/n2.803 speedup)

 Numerical unstable; Not achievable

T0

T2

T3

T1

T4

T5

T6 T7

T8 T9

Strassen’s Algorithm (In practice)

• One-level Strassen (1+14.3% speedup)

 7 multiplications + 22 additions;

• Two-level Strassen (1+30.6% speedup)

 49 multiplications + 344 additions;

• d-level Strassen (n3/n2.803 speedup)

 Numerical unstable; Not achievable

M0 := (A00+A11)(B00+B11);

M1 := (A10+A11)B00;

M2 := A00(B01–B11);

M3 := A11(B10–B00);

M4 := (A00+A01)B11;

M5 := (A10–A00)(B00+B01);

M6 := (A01–A11)(B10+B11);

C00 += M0 + M3 – M4 + M6

C01 += M2 + M4

C10 += M1 + M3

C11 += M0 – M1 + M2 + M5

T0

T2

T3

T1

T4

T5

T6 T7

T8 T9

To achieve practical high performance
of Strassen’s algorithm…...

Our

Implementations

Matrix Size

Matrix Shape

Parallelism

Conventional

Implementations

Must be square

Must be large

No Additional

Workspace

To achieve practical high performance
of Strassen’s algorithm…...

Our

Implementations

Matrix Size

Matrix Shape

Parallelism

Conventional

Implementations

Must be square

Must be large

Usually task parallelism

No Additional

Workspace

Matrix Size

Matrix Shape

Parallelism

To achieve practical high performance
of Strassen’s algorithm…...

Can be data parallelism

Conventional

Implementations
Our

Implementations

Must be square

Must be large

Usually task parallelism

No Additional

Workspace

Outline

• Standard Matrix-matrix multiplication

• Strassen’s Algorithm Reloaded

• Theoretical Model and Analysis

• Performance Experiments

• Conclusion

Level-3 BLAS Matrix-Matrix Multiplication

(GEMM)
• (General) matrix-matrix multiplication (GEMM) is

supported in the level-3 BLAS* interface as

• Ignoring transa and transb, GEMM computes

• We consider the simplified version of GEMM

*Dongarra, Jack J., et al. "A set of level 3 basic linear algebra subprograms."ACM Transactions on Mathematical Software (TOMS) 16.1 (1990): 1-17.

State-of-the-art GEMM in BLIS

• BLAS-like Library Instantiation Software (BLIS) is a portable framework for

instantiating BLAS-like dense linear algebra libraries.

• BLIS provides a refactoring of GotoBLAS algorithm (best-known approach) to

implement GEMM.

• GEMM implementation in BLIS has 6-layers of loops. The outer 5 loops are

written in C. The inner-most loop (micro-kernel) is written in assembly for high

performance.

 Partition matrices into smaller blocks to fit into the different memory hierarchy.

 The order of these loops is designed to utilize the cache reuse rate.

• BLIS opens the black box of GEMM, leading to many applications built on BLIS.

Field Van Zee, and Robert van de Geijn. “BLIS: A Framework for Rapidly Instantiating BLAS Functionality." ACM TOMS 41.3

(2015): 14.

 Chenhan D. Yu, *Jianyu Huang, Woody Austin, Bo Xiao, and George Biros. "Performance optimization for the k-nearest neighbors kernel on

x86 architectures." In SC’15, p. 7. ACM, 2015.

 *Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn. “Strassen’s Algorithm Reloaded.” In submission to SC’16.

 Devin Matthews, Field Van Zee, and Robert van de Geijn. “High-Performance Tensor Contraction without BLAS.” In submission to SC’16

Kazushige Goto, and Robert van de Geijn. "High-performance implementation of the level-3 BLAS." ACM TOMS 35.1 (2008): 4.

Kazushige Goto, and Robert van de Geijn. "Anatomy of high-performance matrix multiplication." ACM TOMS 34.3 (2008): 12.

State-of-the-art GEMM in BLIS

• BLAS-like Library Instantiation Software (BLIS) is a portable framework for

instantiating BLAS-like dense linear algebra libraries.

• BLIS provides a refactoring of GotoBLAS algorithm (best-known approach) to

implement GEMM.

• GEMM implementation in BLIS has 6-layers of loops. The outer 5 loops are

written in C. The inner-most loop (micro-kernel) is written in assembly for high

performance.

 Partition matrices into smaller blocks to fit into the different memory hierarchy.

 The order of these loops is designed to utilize the cache reuse rate.

• BLIS opens the black box of GEMM, leading to many applications built on BLIS.

Chenhan D. Yu, Jianyu Huang, Woody Austin, Bo Xiao, and George Biros. "Performance Optimization for the k-Nearest Neighbors

Kernel on x86 Architectures." In SC’15.

 Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn. “Strassen’s Algorithm Reloaded.” In SC’16.

Devin Matthews. “High-Performance Tensor Contraction without BLAS.”, arXiv:1607.00291

Paul Springer, Paolo Bientinesi. “Design of a High-performance GEMM-like Tensor-Tensor Multiplication”, arXiv:1607.00145

Field Van Zee, and Robert van de Geijn. “BLIS: A Framework for Rapidly Instantiating BLAS Functionality." ACM TOMS 41.3

(2015): 14.

Kazushige Goto, and Robert van de Geijn. "High-performance implementation of the level-3 BLAS." ACM TOMS 35.1 (2008): 4.

Kazushige Goto, and Robert van de Geijn. "Anatomy of high-performance matrix multiplication." ACM TOMS 34.3 (2008): 12.

*Field G. Van Zee, and Tyler M. Smith. “Implementing high-performance

complex matrix multiplication." In ACM Transactions on Mathematical

Software (TOMS), accepted pending modifications.

GotoBLAS algorithm for GEMM in BLIS

+=
nC nC

A Bj
Cj

nC nC

main memory

5th loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

*Field G. Van Zee, and Tyler M. Smith. “Implementing high-performance

complex matrix multiplication." In ACM Transactions on Mathematical

Software (TOMS), accepted pending modifications.

Pack Bp → Bp

~

Bp

~

4th loop around micro-kernel

+=

kC
Ap Bp Cj

kC

L3 cache

+=
nC nC

A Bj
Cj

nC nC

main memory

5th loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

*Field G. Van Zee, and Tyler M. Smith. “Implementing high-performance

complex matrix multiplication." In ACM Transactions on Mathematical

Software (TOMS), accepted pending modifications.

mR

kC

Pack Ai→ Ai

~

Ai

~

3rd loop around micro-kernel

+=
mC

Ci Ai mC

L2 cache

Pack Bp → Bp

~

Bp

~

4th loop around micro-kernel

+=

kC
Ap Bp Cj

kC

L3 cache

+=
nC nC

A Bj
Cj

nC nC

main memory

5th loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

*Field G. Van Zee, and Tyler M. Smith. “Implementing high-performance

complex matrix multiplication." In ACM Transactions on Mathematical

Software (TOMS), accepted pending modifications.

+=

nR nR Bp

~
2nd loop around micro-kernel

Ci mR

kC

Pack Ai→ Ai

~

Ai

~

3rd loop around micro-kernel

+=
mC

Ci Ai mC

L2 cache

Pack Bp → Bp

~

Bp

~

4th loop around micro-kernel

+=

kC
Ap Bp Cj

kC

L3 cache

+=
nC nC

A Bj
Cj

nC nC

main memory

5th loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

*Field G. Van Zee, and Tyler M. Smith. “Implementing high-performance

complex matrix multiplication." In ACM Transactions on Mathematical

Software (TOMS), accepted pending modifications.

Update Cij

mR

+=

nR

kC

1st loop around micro-kernel

L1 cache
registers

+=

nR nR Bp

~
2nd loop around micro-kernel

Ci mR

kC

Pack Ai→ Ai

~

Ai

~

3rd loop around micro-kernel

+=
mC

Ci Ai mC

L2 cache

Pack Bp → Bp

~

Bp

~

4th loop around micro-kernel

+=

kC
Ap Bp Cj

kC

L3 cache

+=
nC nC

A Bj
Cj

nC nC

main memory

5th loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

*Field G. Van Zee, and Tyler M. Smith. “Implementing high-performance

complex matrix multiplication." In ACM Transactions on Mathematical

Software (TOMS), accepted pending modifications.

1

+= 1

micro-kernel

Update Cij

mR

+=

nR

kC

1st loop around micro-kernel

L1 cache
registers

+=

nR nR Bp

~
2nd loop around micro-kernel

Ci mR

kC

Pack Ai→ Ai

~

Ai

~

3rd loop around micro-kernel

+=
mC

Ci Ai mC

L2 cache

Pack Bp → Bp

~

Bp

~

4th loop around micro-kernel

+=

kC
Ap Bp Cj

kC

L3 cache

+=
nC nC

A Bj
Cj

nC nC

main memory

5th loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

*Field G. Van Zee, and Tyler M. Smith. “Implementing high-performance

complex matrix multiplication." In ACM Transactions on Mathematical

Software (TOMS), accepted pending modifications.

1

+= 1

micro-kernel

Update Cij

mR

+=

nR

kC

1st loop around micro-kernel

L1 cache
registers

+=

nR nR Bp

~
2nd loop around micro-kernel

Ci mR

kC

Pack Ai→ Ai

~

Ai

~

3rd loop around micro-kernel

+=
mC

Ci Ai mC

L2 cache

Pack Bp → Bp

~

Bp

~

4th loop around micro-kernel

+=

kC
Ap Bp Cj

kC

L3 cache

+=
nC nC

A Bj
Cj

nC nC

main memory

5th loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

*Field G. Van Zee, and Tyler M. Smith. “Implementing high-performance

complex matrix multiplication." In ACM Transactions on Mathematical

Software (TOMS), accepted pending modifications.

Outline

• Standard Matrix-matrix multiplication

• Strassen’s Algorithm Reloaded

• Theoretical Model and Analysis

• Performance Experiments

• Conclusion

One-level Strassen’s Algorithm Reloaded

M0 := a(A00+A11)(B00+B11);
M1 := a(A10+A11)B00;

M2 := aA00(B01–B11);
M3 := aA11(B10–B00);
M4 := a(A00+A01)B11;
M5 := a(A10–A00)(B00+B01);
M6 := a(A01–A11)(B10+B11);
C00 += M0 + M3 – M4 + M6

C01 += M2 + M4
C10 += M1 + M3

C11 += M0 – M1 + M2 + M5

M0 := a(A00+A11)(B00+B11); C00 += M0; C11 += M0;
M1 := a(A10+A11)B00; C10 += M1; C11 –= M1;
M2 := aA00(B01–B11); C01 += M2; C11 += M2;
M3 := aA11(B10–B00); C00 += M3; C10 += M3;
M4 := a(A00+A01)B11; C01 += M4; C00 –= M4;
M5 := a(A10–A00)(B00+B01); C11 += M5;
M6 := a(A01–A11)(B10+B11); C00 += M6;

 M := a(X+Y)(V+W); C +=M; D +=M;

M := a(X+dY)(V+eW); C += g0M; D += g1M;
g0, g1,d,e {-1, 0, 1}. General operation for one-level Strassen:

M := a(X+dY)(V+eW); C += g0M; D += g1M;
g0, g1,d,e {-1, 0, 1}.

High-performance implementation of the general operation?

M := a(X+dY)(V+eW); C += g0M; D += g1M;
 g0, g1,d,e {-1, 0, 1}.

*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn.

“Strassen’s Algorithm Reloaded.” In SC’16.

+=
nC nC

5th loop around micro-kernel

Y W Dj

X Vj Cj

nC nC

main memory

M := a(X+dY)(V+eW); C += g0M; D += g1M;
 g0, g1,d,e {-1, 0, 1}.

*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn.

“Strassen’s Algorithm Reloaded.” In SC’16.

4th loop around micro-kernel

+=

kC
Yp Wp Dj

kC

Xp Vp Cj

Bp

~

L3 cache

Pack Vp + eWp → Bp

~

+=
nC nC

5th loop around micro-kernel

Y W Dj

X Vj Cj

nC nC

main memory

M := a(X+dY)(V+eW); C += g0M; D += g1M;
 g0, g1,d,e {-1, 0, 1}.

*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn.

“Strassen’s Algorithm Reloaded.” In SC’16.

3rd loop around micro-kernel

+=
mC

Di Yi

mC
Ci Xi

Ai

~

kC

mR

L2 cache

Pack Xi + dYi→ Ai

~

4th loop around micro-kernel

+=

kC
Yp Wp Dj

kC

Xp Vp Cj

Bp

~

L3 cache

Pack Vp + eWp → Bp

~

+=
nC nC

5th loop around micro-kernel

Y W Dj

X Vj Cj

nC nC

main memory

M := a(X+dY)(V+eW); C += g0M; D += g1M;
 g0, g1,d,e {-1, 0, 1}.

*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn.

“Strassen’s Algorithm Reloaded.” In SC’16.

1

+= 1

micro-kernel

mR

+=

nR

kC

1st loop around micro-kernel

Update Cij , Dij

L1 cache
registers

+=

nR nR Bp

~
2nd loop around micro-kernel

Ci

Di

3rd loop around micro-kernel

+=
mC

Di Yi

mC
Ci Xi

Ai

~

kC

mR

L2 cache

Pack Xi + dYi→ Ai

~

4th loop around micro-kernel

+=

kC
Yp Wp Dj

kC

Xp Vp Cj

Bp

~

L3 cache

Pack Vp + eWp → Bp

~

+=
nC nC

5th loop around micro-kernel

Y W Dj

X Vj Cj

nC nC

main memory

M := a(X+dY)(V+eW); C += g0M; D += g1M;
 g0, g1,d,e {-1, 0, 1}.

*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn.

“Strassen’s Algorithm Reloaded.” In SC’16.

1

+= 1

micro-kernel

mR

+=

nR

kC

1st loop around micro-kernel

Update Cij , Dij

L1 cache
registers

+=

nR nR Bp

~
2nd loop around micro-kernel

Ci

Di

3rd loop around micro-kernel

+=
mC

Di Yi

mC
Ci Xi

Ai

~

kC

mR

L2 cache

Pack Xi + dYi→ Ai

~

4th loop around micro-kernel

+=

kC
Yp Wp Dj

kC

Xp Vp Cj

Bp

~

L3 cache

Pack Vp + eWp → Bp

~

+=
nC nC

5th loop around micro-kernel

Y W Dj

X Vj Cj

nC nC

main memory

M := a(X+dY)(V+eW); C += g0M; D += g1M;
 g0, g1,d,e {-1, 0, 1}.

*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn.

“Strassen’s Algorithm Reloaded.” In SC’16.

1

+= 1

micro-kernel

Update Cij

mR

+=

nR

kC

1st loop around micro-kernel

L1 cache
registers

+=

nR nR Bp

~
2nd loop around micro-kernel

Ci mR

kC

Pack Ai→ Ai

~

Ai

~

3rd loop around micro-kernel

+=
mC

Ci Ai mC

L2 cache

Pack Bp → Bp

~

Bp

~

4th loop around micro-kernel

+=

kC
Ap Bp Cj

kC

L3 cache

+=
nC nC

A B Cj

nC nC

main memory

5th loop around micro-kernel

1

+= 1

micro-kernel

mR

+=

nR

kC

1st loop around micro-kernel

Update Cij , Dij

L1 cache
registers

+=

nR nR Bp

~
2nd loop around micro-kernel

Ci

Di

3rd loop around micro-kernel

+=
mC

Di Yi

mC
Ci Xi

Ai

~

kC

mR

L2 cache

Pack Xi + dYi→ Ai

~

4th loop around micro-kernel

+=

kC
Yp Wp Dj

kC

Xp Vp Cj

Bp

~

L3 cache

Pack Vp + eWp → Bp

~

+=
nC nC

5th loop around micro-kernel

Y W Dj

X Vj Cj

nC nC

main memory

Two-level Strassen’s Algorithm Reloaded

Two-level Strassen’s Algorithm Reloaded

(Continue)

 M := a(X0+d1X1+d2X2+d3X3)(V+e1V1+e2V2+e3V3); C0 += g0M; C1 += g1M; C2 += g2M; C3 += g3M;

 gi,di,ei {-1, 0, 1}.

General operation for two-level Strassen:

M := a(X0+X1+X2+X3)(V+V1+V2+V3); C0 += M; C1 += M; C2 += M; C3 += M;

Additional Levels of Strassen Reloaded

• The general operation of one-level Strassen:

• The general operation of two-level Strassen:

• The general operation needed to integrate k levels of

Strassen is given by

M := a(X+dY)(V+eW); C += g0M; D += g1M;
g0, g1,d,e {-1, 0, 1}.

M := a(X0+d1X1+d2X2+d3X3)(V+e1V1+e2V2+e3V3);
C0 += g0M; C1 += g1M; C2 += g2M; C3 += g3M;

 gi,di,ei {-1, 0, 1}.

Building blocks

• Integrate the addition of multiple

matrices Vt into
• A routine for packing Bp into

 written in C/Intel intrinsics

• A routine for packing Ai into
 written in C/Intel intrinsics

• A micro-kernel for updating an

mR×nR submatrix of C.
 written in SIMD assembly (AVX, FMA,

AVX512, etc)

• Integrate the addition of multiple

matrices Xs into

• Integrate the update of multiple

submatrices of C.

BLIS framework Adapted to general operation

Variations on a theme

• Naïve Strassen

 A traditional implementation with temporary

buffers.

• AB Strassen

 Integrate the addition of matrices into and .

• ABC Strassen

 Integrate the addition of matrices into and .

 Integrate the update of multiple submatrices of C

in the micro-kernel.

Parallelization

*Tyler M. Smith, Robert Van De Geijn, Mikhail Smelyanskiy, Jeff R. Hammond, and

Field G. Van Zee. "Anatomy of high-performance many-threaded matrix multiplication."

In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, pp.

1049-1059. IEEE, 2014.

1

+= 1

micro-kernel

mR

+=

nR

kC

1st loop around micro-kernel

Update Cij , Dij

L1 cache
registers

+=

nR nR Bp

~
2nd loop around micro-kernel

Ci

Di

3rd loop around micro-kernel

+=
mC

Di Yi

mC
Ci Xi

Ai

~

kC

mR

L2 cache

Pack Xi + dYi→ Ai

~

4th loop around micro-kernel

+=

kC
Yp Wp Dj

kC

Xp Vp Cj

Bp

~

L3 cache

Pack Vp + eWp → Bp

~

+=
nC nC

5th loop around micro-kernel

Y W Dj

X Vj Cj

nC nC

main memory

• 3rd loop (along mC direction)

• 2nd loop (along nR direction)

• both 3rd and 2nd loop

Outline

• Standard Matrix-matrix multiplication

• Strassen’s Algorithm Reloaded

• Theoretical Model and Analysis

• Performance Experiments

• Conclusion

Performance Model

• Performance Metric

• Total Time Breakdown

Arithmetic

Operations
Memory

Operations

Arithmetic Operations

• DGEMM
 No extra additions

• One-level Strassen (ABC, AB, Naïve)
 7 submatrix multiplications

 5 extra additions of submatrices of A and B

 12 extra additions of submatrices of C

• Two-level Strassen (ABC, AB, Naïve)
 49 submatrix multiplications

 95 extra additions of submatrices of A and B

 154 extra additions of submatrices of C

Submatrix

multiplication

Extra additions with

submatrices of A, B, C,

respectively

M0 := a(A00+A11)(B00+B11); C00 += M0; C11 += M0;
M1 := a(A10+A11)B00; C10 += M1; C11 –= M1;
M2 := aA00(B01–B11); C01 += M2; C11 += M2;
M3 := aA11(B10–B00); C00 += M3; C10 += M3;
M4 := a(A00+A01)B11; C01 += M4; C00 –= M4;
M5 := a(A10–A00)(B00+B01); C11 += M5;
M6 := a(A01–A11)(B10+B11); C00 += M6;

Memory Operations

• DGEMM

• One-level

 ABC Strassen

 AB Strassen

 Naïve Strassen

• Two-level

 ABC Strassen

 AB Strassen

 Naïve Strassen

Modeled and Actual Performance

on Single Core

Modeled Performance Actual Performance

Observation (Square Matrices)

Modeled Performance Actual Performance

Observation (Square Matrices)

Modeled Performance Actual Performance

Observation (Square Matrices)

Modeled Performance Actual Performance

Observation (Square Matrices)

Modeled Performance Actual Performance

Observation (Square Matrices)

Modeled Performance Actual Performance

26.0%

13.1%

Observation (Square Matrices)

• One-level Strassen (1+14.3% speedup)

 8 multiplications → 7 multiplications;

• Two-level Strassen (1+30.6% speedup)

 64 multiplications → 49 multiplications;

Theoretical Speedup over DGEMM

• Both one-level and two-level

 For small square matrices, ABC
Strassen outperforms AB
Strassen

 For larger square matrices, this
trend reverses

• Reason

 ABC Strassen avoids storing M
(M resides in the register)

 ABC Strassen increases the
number of times for updating
submatrices of C

Observation (Square Matrices)

1

+= 1

micro-kernel

Update Cij

mR

+=

nR

kC

1st loop around micro-kernel

L1 cache
registers

+=

nR nR Bp

~
2nd loop around micro-kernel

Ci mR

kC

Pack Ai→ Ai

~

Ai

~

3rd loop around micro-kernel

+=
mC

Ci Ai mC

L2 cache

Pack Bp → Bp

~

Bp

~

4th loop around micro-kernel

+=

kC
Ap Bp Cj

kC

L3 cache

+=
nC nC

A B Cj

nC nC

main memory

5th loop around micro-kernel

1

+= 1

micro-kernel

mR

+=

nR

kC

1st loop around micro-kernel

Update Cij , Dij

L1 cache
registers

+=

nR nR Bp

~
2nd loop around micro-kernel

Ci

Di

3rd loop around micro-kernel

+=
mC

Di Yi

mC
Ci Xi

Ai

~

kC

mR

L2 cache

Pack Xi + dYi→ Ai

~

4th loop around micro-kernel

+=

kC
Yp Wp Dj

kC

Xp Vp Cj

Bp

~

L3 cache

Pack Vp + eWp → Bp

~

+=
nC nC

5th loop around micro-kernel

Y W Dj

X Vj Cj

nC nC

main memory

• Both one-level and two-level

 For small square matrices, ABC
Strassen outperforms AB
Strassen

 For larger square matrices, this
trend reverses

• Reason

 ABC Strassen avoids storing M
(M resides in the register)

 ABC Strassen increases the
number of times for updating
submatrices of C

Observation (Square Matrices)

• What is Rank-k update?

Observation (Rank-k Update)

k

n

n

m
m

• Importance of Rank-k update

Observation (Rank-k Update)

Blocked LU with partial pivoting (getrf)

A21

A12

A22

• Importance of Rank-k update

Observation (Rank-k Update)

A21

A12

A22 += ×

Modeled Performance Actual Performance

Observation (Rank-k Update)

Modeled Performance Actual Performance

Observation (Rank-k Update)

Modeled Performance Actual Performance

Observation (Rank-k Update)

Modeled Performance Actual Performance

Observation (Rank-k Update)

Modeled Performance Actual Performance

Observation (Rank-k Update)

Modeled Performance Actual Performance

Observation (Rank-k Update)

• Reason:

ABC Strassen avoids forming the temporary matrix M

explicitly in the memory (M resides in register),

especially important when m, n >> k.

Outline

• Standard Matrix-matrix multiplication

• Strassen’s Algorithm Reloaded

• Theoretical Model and Analysis

• Performance Experiments

• Conclusion

Single Node Experiment

1 core 5 core 10 core

S
q

u
a
re

 M
a
tr

ic
e
s

R

a
n

k
-k

 U
p

d
a
te

Many-core Experiment

Intel® Xeon Phi™ coprocessor (KNC)

Distributed Memory Experiment

Outline

• Standard Matrix-matrix multiplication

• Strassen’s Algorithm Reloaded

• Theoretical Model and Analysis

• Performance Experiments

• Conclusion

To achieve practical high performance
of Strassen’s algorithm…...

Matrix Size

Matrix Shape

Parallelism Can be data parallelism

Conventional

Implementations
Our

Implementations

Must be square

Must be large

Usually task parallelism

No Additional

Workspace

Acknowledgement

- NSF grants ACI-1148125/1340293, CCF-1218483.
- Intel Corporation through an Intel Parallel Computing Center (IPCC).
- Access to the Maverick and Stampede supercomputers administered by TACC.

We thank Field Van Zee, Chenhan Yu, Devin Matthews, and the rest of the SHPC
team (http://shpc.ices.utexas.edu) for their supports.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

http://shpc.ices.utexas.edu
http://shpc.ices.utexas.edu

Thank you!

