Strassen's Algorithm Reloaded

Jianyu Huang, Tyler M. Smith,
Greg M. Henry, Robert A. van de Geijn
The University of Texas at Austin, Intel Salt Lake City, UT
November 16 ${ }^{\text {th }}, 2016$
*Overlook of the Bay Area. Photo taken in Mission Peak Regional Preserve, Fremont, CA. Summer 2014.

SiRASSEN, from 30,000 feet
 Volker Strassen (Born in 1936, aged 80)
 Original Strassen Paper (1969)
 Numer. Math. 13. 354-356 (1969)

Gaussian Elimination is not Optimal

Volker Strassen*

$$
\text { Received December 12, } 1968
$$

1. Below we will give an algorithm which computes the coefficients of the product of two square matrices A and B of order n from the coefficients of A paper are for base than $4.7 \cdot n^{\text {log } 7}$ arithmetical operations (all logarithms in this $2 n^{3}$ arithmetical operations). The algorithm induces algorithms for inverting a matrix of order n, solving a system of n linear equations in n unknowns, com puting a determinant of order n etc. all requiring less than const $n^{\text {hes }}$ arithmetical
operations.
This fact should be compared with the result of Klyuyer and KoкоvkisShcherbak [1] that Gaussian elimination for solving a system of linearequations is optimal if one restricts oneself to operations upon rows and columns as a
whole. We also note that WnNoGRAD $[2]$ modifies the usual algorithms for matrix multiplication and inversion and for solving systems of linear equations, trading roughly half of the multiplications for additions and subtractions.
It is a pleasure to thank D. Brilungarr for inspiring discussions about the present subject and ST. Cook and B. PAkLert for encouraging me to write this paper. 2. We define algorithms $\alpha_{m, n}$ which multiply matrices of order $m 2^{h}$, by in duction on $k: \alpha_{m, 0}$ is the usual algorithm for matrix multiplication (requiring m^{3} multiplications and $m^{2}(m-1)$ additions). $\alpha_{m, k}$ already being known, define $\alpha_{m, k+1}$ as follows

If A, B are matrices of order $m 2^{n+1}$ to be multiplied, write

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right), \quad A B=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right),
$$

where the $A_{i \alpha}, B_{i k}, C_{i \alpha}$ are matrices of order $m 2^{k}$. Then compute
I $=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right)$
II $=\left(A_{21}+A_{22}\right) B_{11}$,
III $=A_{11}\left(B_{12}-B_{22}\right)$,
$\mathrm{IV}=A_{22}\left(-B_{11}+B_{21}\right)$
$\mathrm{V}=\left(A_{12}+A_{12}\right) B_{22}$
$\mathrm{VI}=\left(-A_{11}+A_{21}\right)\left(B_{11}+B_{12}\right)$
$\mathrm{VII}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)$.
*The results have been found while the author was at the Department of Statistice of the University of California, Berkeley. The author wishes to thank the National
Science Foundation for their support (NSF GP-7454).

One-level Strassen's Algorithm (In theory)

Assume m, n, and k are all even. A, B, and C are $m \times k, k \times n, m \times n$ matrices, respectively. Letting

$$
C=\left(\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right), A=\left(\begin{array}{ll}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right), B=\left(\begin{array}{cc}
B_{00} & B_{01} \\
B_{10} & B_{11}
\end{array}\right)
$$

We can compute $C:=C+A B$ by

Direct Computation

Strassen's Algorithm

$$
\begin{aligned}
& M_{0}:=\left(A_{00}+A_{11}\right)\left(B_{00}+B_{11}\right) ; \\
& M_{1}:=\left(A_{10}+A_{11}\right) B_{00} \\
& M_{2}:=A_{00}\left(B_{01}-B_{11}\right) ; \\
& M_{3}:=A_{11}\left(B_{10}-B_{00}\right) ; \\
& \left.M_{1}:=\left(A_{00}+A_{01}\right)\right)_{11} ; \\
& M_{5}:=\left(A_{10}-A_{00}\right)\left(B_{00}+B_{01}\right) ; \\
& M_{6}:=\left(A_{01}-A_{11}\right)\left(B_{10}+B_{11}\right) ; \\
& \left.C_{00}\right)=M_{0}+M_{3}-M_{4}+M_{7}+C_{00} ; \\
& C_{01}:=M_{2}+M_{4}+C_{01 ;} \\
& C_{10}:=M_{1}+M_{3}+C_{10} ; \\
& C_{11}:=M_{0}-M_{1}+M_{2}+M_{5}+C_{11} .
\end{aligned}
$$

8 multiplications, 8 additions
7 multiplications, 22 additions

Multi-level Strassen's Algorithm (In theory)

$$
\begin{aligned}
& M_{0}:=\left(A_{00}+A_{11}\right)\left(B_{00}+B_{11}\right) ; \\
& M_{1}:=\left(\mathrm{A}_{10}+\mathrm{A}_{11}\right) \mathrm{B}_{00} ; \\
& M_{2}:=A_{00}\left(B_{01}-B_{11}\right) ; \\
& M_{3}:=A_{11}\left(B_{10}-B_{00}\right) ; \\
& M_{4}:=\left(\mathrm{A}_{00}+\mathrm{A}_{01}\right) \mathrm{B}_{11} ; \\
& M_{5}:=\left(A_{10}-A_{00}\right)\left(B_{00}+B_{01}\right) ; \\
& M_{6}:=\left(A_{01}-A_{11}\right)\left(B_{10}+B_{11}\right) ; \\
& C_{00}+=M_{0}+M_{3}-M_{4}+M_{6} \\
& C_{01}+=M_{2}+M_{4} \\
& C_{10}+=M_{1}+M_{3} \\
& C_{11}+=M_{0}-M_{1}+M_{2}+M_{5}
\end{aligned}
$$

- One-level Strassen ($1+14.3 \%$ speedup)
>8 multiplications $\rightarrow 7$ multiplications;
- Two-level Strassen ($1+30.6 \%$ speedup)
> 64 multiplications $\rightarrow 49$ multiplications;
- d-level Strassen ($n^{3} / n^{2.803}$ speedup)
$>8^{d}$ multiplications $\rightarrow 7^{d}$ multiplications;
If originally $m=n=k=2^{d}$, where d is an integer, then the cost becomes
$(7 / 8)^{\log _{2}(n)} 2 n^{3}=n^{\log _{2}(7 / 8)} 2 n^{3} \approx 2 n^{2.807}$ flops.

Multi-level Strassen’s Algorithm (In theory)

$$
\begin{aligned}
& M_{0}:=\left(A_{00}+A_{11}\right)\left(B_{00}+B_{11}\right) ; \\
& M_{1}:=\left(\mathrm{A}_{10}+\mathrm{A}_{11}\right) \mathrm{B}_{00} ; \\
& M_{2}:=A_{00}\left(B_{01}-B_{11}\right) ; \\
& M_{3}:=A_{11}\left(B_{10}-B_{00}\right) ; \\
& M_{4}:=\left(\mathrm{A}_{00}+\mathrm{A}_{01}\right) \mathrm{B}_{11} ; \\
& M_{5}:=\left(A_{10}-A_{00}\right)\left(B_{00}+B_{01}\right) ; \\
& M_{6}:=\left(A_{01}-A_{11}\right)\left(B_{10}+B_{11}\right) ; \\
& C_{00}+=M_{0}+M_{3}-M_{4}+M_{6} \\
& C_{01}+=M_{2}+M_{4} \\
& C_{10}+=M_{1}+M_{3} \\
& C_{11}+=M_{0}-M_{1}+M_{2}+M_{5}
\end{aligned}
$$

- One-level Strassen ($1+14.3 \%$ speedup)
> 8 multiplications $\rightarrow 7$ multiplications ;
- Two-level Strassen ($1+30.6 \%$ speedup)
>64 multiplications $\rightarrow 49$ multiplications;
- d-level Strassen ($n^{3} / h^{2.803}$ speedup)
$>8^{d}$ multiplications $\rightarrow 7^{d}$ multiplications;

Strassen’s Algorithm (In practice)

$$
\begin{aligned}
& M_{0}:=\left(A_{00}+A_{11}\right)\left(B_{00}+B_{11}\right) ; \\
& M_{1}:=\left(\mathrm{A}_{10}+\mathrm{A}_{11}\right) \mathrm{B}_{00} ; \\
& M_{2}:=A_{00}\left(B_{01}-B_{11}\right) ; \\
& M_{3}:=A_{11}\left(B_{10}-B_{00}\right) ; \\
& M_{4}:=\left(\mathrm{A}_{00}+\mathrm{A}_{01}\right) \mathrm{B}_{11} ; \\
& M_{5}:=\left(A_{10}-A_{00}\right)\left(B_{00}+B_{01}\right) ; \\
& M_{6}:=\left(A_{01}-A_{11}\right)\left(B_{10}+B_{11}\right) ; \\
& C_{00}+=M_{0}+M_{3}-M_{4}+M_{6} \\
& C_{01}+=M_{2}+M_{4} \\
& C_{10}+=M_{1}+M_{3} \\
& C_{11}+=M_{0}-M_{1}+M_{2}+M_{5}
\end{aligned}
$$

Strassen's Algorithm (In practice)

$$
\begin{aligned}
& M_{0}:=\left(\frac{T_{0}}{A_{00}+A_{11}}\right)\left(\overline{T_{1}} \overline{B 0}_{00}+B_{11}\right) \text {; } \\
& M_{1}:=\left(\mathrm{A}_{10}+{ }_{T 1}{ }^{2} \mathrm{~A}_{11}\right) \mathrm{B}_{00} \text {; } \\
& M_{2}:=A_{00}\left(\mathcal{B}_{01}^{T_{3}} B_{11}\right) ; \\
& M_{3}:=A_{11}\left(B_{10} 0^{-B_{00}}\right) \text {; } \\
& M_{4}:=\left(\mathrm{A}_{00_{T}}{ }^{+\mathrm{A}_{01}}\right) \mathrm{B}_{11} ;_{T_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& M_{6}:=\left(A_{01^{-}}^{-8} A_{11}\right)\left(B_{10}+B_{11}^{2}\right) ; \\
& C_{00}+=M_{0}+M_{3}-M_{4}+M_{6} \\
& C_{01}+=M_{2}+M_{4} \\
& C_{10}+=M_{1}+M_{3} \\
& C_{11}+=M_{0}-M_{1}+M_{2}+M_{5}
\end{aligned}
$$

- One-level Strassen ($1+14.3 \%$ speedup)
>7 multiplications +22 additions;
- Two-level Strassen ($1+30.6 \%$ speedup)
>49 multiplications +344 additions;

Strassen's Algorithm (In practice)

$$
\begin{aligned}
& M_{0}:=\left(\frac{T_{0}}{A_{00}+A_{11}}\right)\left(\overline{B_{00}+B_{11}}\right) ; \\
& M_{1}:=\left(\mathrm{A}_{10}+\mathrm{A}_{11}\right) \mathrm{B}_{00} ; \\
& M_{2}:=A_{00}\left(\bar{B}_{01}-B_{11}\right) ; \\
& M_{3}:=A_{11}\left(\bar{B}_{T_{1}}-B_{00}\right) ; \\
& M_{4}:=\left(\mathrm{A}_{00}+T_{T_{6}}+\mathrm{A}_{01}\right) \mathrm{B}_{11} ; T_{T_{7}} \\
& M_{5}:=\left(A_{10}^{-} A_{00}\right)\left(B_{00}^{+}+B_{01}\right) ; \\
& M_{6}:=\left(A_{01}-A_{11}\right)\left(B_{10}+B_{11}\right) ; \\
& C_{00}+=M_{0}+M_{3}-M_{4}+M_{6} \\
& C_{01}+=M_{2}+M_{4} \\
& C_{10}+=M_{1}+M_{3} \\
& C_{11}+=M_{0}-M_{1}+M_{2}+M_{5}
\end{aligned}
$$

- One-level Strassen ($1+14.3 \%$ speedup)
> 7 multiplications + 22 additions;
- Two-level Strassen ($1+30.6 \%$ speedup)
>49 multiplications +344 additions;
- d-level Strassen ($n^{3} / n^{2.803}$ speedup)
> Numerical unstable; Not achievable

To achieve practical high performance of Strassen's algorithm......

Conventional Implementations

Our
Implementations

Matrix Size Must be large

Matrix Shape Must be square \because

No Additional Workspace

Parallelism

To achieve practical high performance of Strassen's algorithm......

Conventional Implementations

Our
Implementations

Matrix Size Must be large

Matrix Shape Must be square \because

No Additional Workspace

Parallelism
Usually task parallelism

To achieve practical high performance of Strassen's algorithm......

Conventional Implementations

Our Implementations

Matrix Size Must be large $\quad \cdot$
c $+=A \times$ B

Matrix Shape
Must be square \bullet

No Additional Workspace

Parallelism
Usually task parallelism \because
Can be data parallelism \bullet^{\bullet}

Outline

- Standard Matrix-matrix multiplication
- Strassen's Algorithm Reloaded
- Theoretical Model and Analysis
- Performance Experiments
- Conclusion

Level-3 BLAS Matrix-Matrix Multiplication (GEMM)

- (General) matrix-matrix multiplication (GEMM) is supported in the level-3 BLAS* interface as dgemm(transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc)
- Ignoring transa and transb, GEMM computes

$$
C:=\alpha A B+\beta C
$$

- We consider the simplified version of GEMM

$$
C:=\alpha A B+C
$$

State-of-the-art GEMM in BLIS

- BLAS-like Library Instantiation Software (BLIS) is a portable framework for instantiating BLAS-like dense linear algebra libraries.
\square Field Van Zee, and Robert van de Geijn. "BLIS: A Framework for Rapidly Instantiating BLAS Functionality." ACM TOMS 41.3 (2015): 14.
- BLIS provides a refactoring of GotoBLAS algorithm (best-known approach) to implement GEMM.
\square Kazushige Goto, and Robert van de Geijn. "High-performance implementation of the level-3 BLAS." ACM TOMS 35.1 (2008): 4.
\square Kazushige Goto, and Robert van de Geijn. "Anatomy of high-performance matrix multiplication." ACM TOMS 34.3 (2008): 12.
- GEMM implementation in BLIS has 6-layers of loops. The outer 5 loops are written in C. The inner-most loop (micro-kernel) is written in assembly for high performance.
$>$ Partition matrices into smaller blocks to fit into the different memory hierarchy.
$>$ The order of these loops is designed to utilize the cache reuse rate.

State-of-the-art GEMM in BLIS

- BLAS-like Library Instantiation Software (BLIS) is a portable framework for instantiating BLAS-like dense linear algebra libraries.
\square Field Van Zee, and Robert van de Geijn. "BLIS: A Framework for Rapidly Instantiating BLAS Functionality." ACM TOMS 41.3 (2015): 14.
- BLIS provides a refactoring of GotoBLAS algorithm (best-known approach) to implement GEMM.
\square Kazushige Goto, and Robert van de Geijn. "High-performance implementation of the level-3 BLAS." ACM TOMS 35.1 (2008): 4.Kazushige Goto, and Robert van de Geijn. "Anatomy of high-performance matrix multiplication." ACM TOMS 34.3 (2008): 12.
- GEMM implementation in BLIS has 6-layers of loops. The outer 5 loops are written in C. The inner-most loop (micro-kernel) is written in assembly for high performance.
$>$ Partition matrices into smaller blocks to fit into the different memory hierarchy.
> The order of these loops is designed to utilize the cache reuse rate.
- BLIS opens the black box of GEMM, leading to many applications built on BLIS.

[^0]
GotoBLAS algorithm for GEMM in BLIS

*Field G. Van Zee, and Tyler M. Smith. "Implementing high-performance complex matrix multiplication." In ACM Transactions on Mathematical Software (TOMS), accepted pending modifications.
$5^{\text {th }}$ loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

Loop 5 for $j_{c}=0: n-1$ steps of n_{c} $\mathcal{J}_{c}=j_{c}: j_{c}+n_{c}-1$

endfor

*Field G. Van Zee, and Tyler M. Smith. "Implementing high-performance complex matrix multiplication." In ACM Transactions on Mathematical Software (TOMS), accepted pending modifications.
$5^{\text {th }}$ loop around micro-kernel

$4^{\text {th }}$ loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

Loop 5 for $j_{c}=0: n-1$ steps of n_{c} $\mathcal{J}_{c}=j_{c}: j_{c}+n_{c}-1$
Loop 4 for $p_{c}=0: k-1$ steps of k_{c}
$\mathcal{P}_{c}=p_{c}: p_{c}+k_{c}-1$
$B\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right) \rightarrow B_{p}$

endfor endfor

*Field G. Van Zee, and Tyler M. Smith. "Implementing high-performance complex matrix multiplication." In ACM Transactions on Mathematical Software (TOMS), accepted pending modifications.
$5^{\text {th }}$ loop around micro-kernel

$4^{\text {th }}$ loop around micro-kernel

round micro-kernel
+=

Pack $A_{i} \rightarrow \tilde{A}_{i}$

GotoBLAS algorithm for GEMM in BLIS

Loop 5 for $j_{c}=0: n-1$ steps of n_{c} $\mathcal{J}_{c}=j_{c}: j_{c}+n_{c}-1$
Loop 4 for $p_{c}=0: k-1$ steps of k_{c}
$\mathcal{P}_{c}=p_{c}: p_{c}+k_{c}-1$
$B\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right) \rightarrow B_{p}$
Loop 3

$$
\text { for } i_{c}=0: m-1 \text { steps of } m_{c}
$$

$$
\mathcal{I}_{c}=i_{c}: i_{c}+m_{c}-1
$$

$$
A\left(\mathcal{I}_{c}, \mathcal{P}_{c}\right) \rightarrow \widetilde{A}_{i}
$$

endfor endfor endfor

*Field G. Van Zee, and Tyler M. Smith. "Implementing high-performance complex matrix multiplication." In ACM Transactions on Mathematical Software (TOMS), accepted pending modifications.
$5^{\text {th }}$ loop around micro-kernel

$4^{\text {th }}$ loop around micro-kernel

Loop 3

$$
\text { for } i_{c}=0: m-1 \text { steps of } m_{c}
$$

$$
\mathcal{I}_{c}=i_{c}: i_{c}+m_{c}-1
$$

$$
A\left(\mathcal{I}_{c}, \mathcal{P}_{c}\right) \rightarrow \widetilde{A}_{i}
$$

// macro-kernel

Loop 2

$$
\text { for } j_{r}=0: n_{c}-1 \text { steps of } n_{r}
$$

$$
\mathcal{J}_{r}=j_{r}: j_{r}+n_{r}-1
$$

```
            endfor
            endfor
        endfor
    endfor
```

*Field G. Van Zee, and Tyler M. Smith. "Implementing high-performance complex matrix multiplication." In ACM Transactions on Mathematical Software (TOMS), accepted pending modifications.
$5^{\text {th }}$ loop around micro-kernel

$4^{\text {th }}$ loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

Loop 5 for $j_{c}=0: n-1$ steps of n_{c} $\mathcal{J}_{c}=j_{c}: j_{c}+n_{c}-1$
Loop 4 for $p_{c}=0: k-1$ steps of k_{c} $\mathcal{P}_{c}=p_{c}: p_{c}+k_{c}-1$
$B\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right) \rightarrow B_{p}$
Loop 3

$$
\text { for } i_{c}=0: m-1 \text { steps of } m_{c}
$$

$$
\mathcal{I}_{c}=i_{c}: i_{c}+m_{c}-1
$$

$A\left(\mathcal{I}_{c}, \mathcal{P}_{c}\right) \rightarrow \mathcal{A}_{i}$
// macro-kernel
Loop 2
for $j_{r}=0: n_{c}-1$ steps of n_{r} $\mathcal{J}_{r}=j_{r}: j_{r}+n_{r}-1$
Loop 1

$$
\begin{aligned}
\text { for } i_{r} & =0: m_{c}-1 \text { steps of } m_{r} \\
\mathcal{I}_{r} & =i_{r}: i_{r}+m_{r}-1
\end{aligned}
$$

endfor
endfor
endfor endfor
endfor
*Field G. Van Zee, and Tyler M. Smith. "Implementing high-performance complex matrix multiplication." In ACM Transactions on Mathematical Software (TOMS), accepted pending modifications.
$5^{\text {th }}$ loop around micro-kernel

$4^{\text {th }}$ loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

Loop 5 for $j_{c}=0: n-1$ steps of n_{c} $\mathcal{J}_{c}=j_{c}: j_{c}+n_{c}-1$
Loop 4 for $p_{c}=0: k-1$ steps of k_{c} $\mathcal{P}_{c}=p_{c}: p_{c}+k_{c}-1$
$B\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right) \rightarrow B_{p}$
Loop 3

$$
\text { for } i_{c}=0: m-1 \text { steps of } m_{c}
$$

$\mathcal{I}_{c}=i_{c}: i_{c}+m_{c}-1$
$A\left(\mathcal{I}_{c}, \mathcal{P}_{c}\right) \rightarrow A_{i}$
// macro-kernel
Loop 2
for $j_{r}=0: n_{c}-1$ steps of n_{r} $\mathcal{J}_{r}=j_{r}: j_{r}+n_{r}-1$
Loop 1

$$
\text { for } i_{r}=0: m_{c}-1 \text { steps of } m_{r}
$$

$$
\mathcal{I}_{r}=i_{r}: i_{r}+m_{r}-1
$$

//micro-kernel

Loop 0 for $p_{r}=0: p_{c}-1$ steps of 1
$C_{c}\left(\mathcal{I}_{r}, \mathcal{J}_{r}\right)+=\alpha \widetilde{A}_{i}\left(\mathcal{I}_{r}, p_{r}\right) \widetilde{B}_{p}\left(p_{r}, \mathcal{J}_{r}\right)$ endfor endfor endfor
endfor endfor endfor
*Field G. Van Zee, and Tyler M. Smith. "Implementing high-performance complex matrix multiplication." In ACM Transactions on Mathematical Software (TOMS), accepted pending modifications.
$5^{\text {th }}$ loop around micro-kernel

$4^{\text {th }}$ loop around micro-kernel

GotoBLAS algorithm for GEMM in BLIS

Loop 5 for $j_{c}=0: n-1$ steps of n_{c} $\mathcal{J}_{c}=j_{c}: j_{c}+n_{c}-1$
Loop 4 for $p_{c}=0: k-1$ steps of k_{c} $\mathcal{P}_{c}=p_{c}: p_{c}+k_{c}-1$
$B\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right) \rightarrow B_{p}$
Loop 3

$$
\text { for } i_{c}=0: m-1 \text { steps of } m_{c}
$$

$$
\mathcal{I}_{c}=i_{c}: i_{c}+m_{c}-1
$$

$A\left(\mathcal{I}_{c}, \mathcal{P}_{c}\right) \rightarrow A_{i}$
// macro-kernel
Loop 2
for $j_{r}=0: n_{c}-1$ steps of n_{r} $\mathcal{J}_{r}=j_{r}: j_{r}+n_{r}-1$
Loop 1

$$
\text { for } i_{r}=0: m_{c}-1 \text { steps of } m_{r}
$$

$\mathcal{I}_{r}=i_{r}: i_{r}+m_{r}-1$
//micro-kernel
for $p_{r}=0: p_{c}-1$ steps of 1
$C_{c}\left(\mathcal{I}_{r}, \mathcal{J}_{r}\right)+=\alpha \widetilde{A}_{i}\left(\mathcal{I}_{r}, p_{r}\right) \widetilde{B}_{p}\left(p_{r}, \mathcal{J}_{r}\right)$
endfor
endfor
endfor
endfor endfor
endfor
*Field G. Van Zee, and Tyler M. Smith. "Implementing high-performance complex matrix multiplication." In ACM Transactions on Mathematical Software (TOMS), accepted pending modifications.

Outline

- Standard Matrix-matrix multiplication
- Strassen's Algorithm Reloaded
- Theoretical Model and Analysis
- Performance Experiments
- Conclusion

One-level Strassen's Algorithm Reloaded

$$
\begin{array}{lrl}
M_{0}:=\alpha\left(A_{00}+A_{11}\right)\left(B_{00}+B_{11}\right) ; & & \\
M_{1}:=\alpha\left(\mathrm{A}_{10}+\mathrm{A}_{11}\right) \mathrm{B}_{00} ; & & M_{0}:=\alpha\left(A_{00}+A_{11}\right)\left(B_{00}+B_{11}\right) ; \\
M_{2}:=\alpha A_{00}\left(B_{01}-B_{11}\right) ; & M_{1}:=\alpha\left(\mathrm{A}_{10}+\mathrm{A}_{11}\right) \mathrm{B}_{00} ; & C_{10}+=C_{11}+=M_{1} ; C_{11}-=M_{1} ; \\
M_{3}:=\alpha A_{11}\left(B_{10}-B_{00}\right) ; & M_{2}:=\alpha A_{00}\left(B_{01}-B_{11}\right) ; & C_{01}+=M_{2} ; C_{11}+=M_{2} ; \\
M_{4}:=\alpha\left(\mathrm{A}_{00}+\mathrm{A}_{01}\right) \mathrm{B}_{11} ; & M_{3}:=\alpha A_{11}\left(B_{10}-B_{00}\right) ; & C_{00}+=M_{3} ; C_{10}+=M_{3} ; \\
M_{5}:=\alpha\left(A_{10}-A_{00}\right)\left(B_{00}+B_{01}\right) ; & M_{4}:=\alpha\left(\mathrm{A}_{00}+\mathrm{A}_{01}\right) \mathrm{B}_{11} ; & C_{01}+=M_{4} ; C_{00}-=M_{4} ; \\
M_{6}:=\alpha\left(A_{01}-A_{11}\right)\left(B_{10}+B_{11}\right) ; & M_{5}:=\alpha\left(A_{10}-A_{00}\right)\left(B_{00}+B_{01}\right) ; & C_{11}+=M_{5} ; \\
C_{00}+=M_{0}+M_{3}-M_{4}+M_{6} & M_{6}:=\alpha\left(A_{01}-A_{11}\right)\left(B_{10}+B_{11}\right) ; & C_{00}+=M_{6} ; \\
C_{01}+=M_{2}+M_{4} & & \\
C_{10}+=M_{1}+M_{3} & & \\
C_{11}+=M_{0}-M_{1}+M_{2}+M_{5} & &
\end{array}
$$

$$
M:=\alpha(X+Y)(V+W) ; \quad C+=M ; \quad \mathrm{D}+=M ;
$$

$$
\text { General operation for one-level Strassen: } \begin{array}{ll}
M:=\alpha(X+\delta Y)(V+\varepsilon W) ; & C+=\gamma_{0} M ; D+=\gamma_{1} M ; \\
\gamma_{0}, \gamma_{1}, \delta, \varepsilon \in\{-1,0,1\} . & \\
\hline
\end{array}
$$

High-performance implementation of the general operation?

$$
\begin{array}{ll}
M:=\alpha(X+\delta Y)(V+\varepsilon W) ; & C+=\gamma_{0} M ; D+=\gamma_{1} M \\
\gamma_{0}, \gamma_{1}, \delta, \varepsilon \in\{-1,0,1\} .
\end{array}
$$

$M:=\alpha(X+\delta Y)(V+\varepsilon W) ; \quad C+=\gamma_{0} M ; D+=\gamma_{1} M ;$ $\gamma_{0}, \gamma_{1}, \delta, \varepsilon \in\{-1,0,1\}$.

*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn.
"Strassen’s Algorithm Reloaded." In SC'16.
$M:=\alpha(X+\delta Y)(V+\varepsilon W) ; \quad C+=\gamma_{0} M ; D+=\gamma_{1} M ;$ $\gamma_{0}, \gamma_{1}, \delta, \varepsilon \in\{-1,0,1\}$.

Loop 5 for $j_{c}=0: n-1$ steps of n_{c} $\mathcal{J}_{c}=j_{c}: j_{c}+n_{c}-1$
endfor
*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn.
"Strassen’s Algorithm Reloaded." In SC'16.
$M:=\alpha(X+\delta Y)(V+\varepsilon W) ; \quad C+=\gamma_{0} M ; D+=\gamma_{1} M$; $\gamma_{0}, \gamma_{1}, \delta, \varepsilon \in\{-1,0,1\}$.

Loop 5 for $j_{c}=0: n-1$ steps of n_{c} $\mathcal{J}_{c}=j_{c}: j_{c}+n_{c}-1$
Loop 4 for $p_{c}=0: k-1$ steps of k_{c} $\mathcal{P}_{c}=p_{c}: p_{c}+k_{c}-1$

$$
V\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right)+\epsilon W\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right) \rightarrow \widetilde{B}_{p}
$$

$M:=\alpha(X+\delta Y)(V+\varepsilon W) ; \quad C+=\gamma_{0} M ; D+=\gamma_{1} M ;$ $\gamma_{0}, \gamma_{1}, \delta, \varepsilon \in\{-1,0,1\}$.

Loop 5 for $j_{c}=0: n-1$ steps of n_{c}

$$
\mathcal{J}_{c}=j_{c}: j_{c}+n_{c}-1
$$

Loop 4 for $p_{c}=0: k-1$ steps of k_{c}

$$
\mathcal{P}_{c}=p_{c}: p_{c}+k_{c}-1
$$

Loop 3

$$
V\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right)+\epsilon W\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right) \rightarrow \widetilde{B}_{p}
$$

$$
\text { for } i_{c}=0: m-1 \text { steps of } m_{c}
$$

$$
\mathcal{I}_{c}=i_{c}: i_{c}+m_{c}-1
$$

$$
X\left(\mathcal{I}_{c}, \mathcal{P}_{c}\right)+\delta Y\left(\mathcal{I}_{c}, \mathcal{P}_{c}\right) \rightarrow \widetilde{A}_{i}
$$

endfor endfor

endfor

*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn.
"Strassen's Algorithm Reloaded." In SC'16.

$M:=\alpha(X+\delta Y)(V+\varepsilon W) ; \quad C+=\gamma_{0} M ; D+=\gamma_{1} M ;$ $\gamma_{0}, \gamma_{1}, \delta, \varepsilon \in\{-1,0,1\}$.

Loop 5 for $j_{c}=0: n-1$ steps of n_{c}

$$
\mathcal{J}_{c}=j_{c}: j_{c}+n_{c}-1
$$

Loop 4 for $p_{c}=0: k-1$ steps of k_{c}

$$
\mathcal{P}_{c}=p_{c}: p_{c}+k_{c}-1
$$

$$
V\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right)+\epsilon W\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right) \rightarrow \widetilde{B}_{p}
$$

Loop 3 for $i_{c}=0: m-1$ steps of m_{c}

$$
\mathcal{I}_{c}=i_{c}: i_{c}+m_{c}-1
$$

$$
X\left(\mathcal{I}_{c}, \mathcal{P}_{c}\right)+\delta Y\left(\mathcal{I}_{c}, \mathcal{P}_{c}\right) \rightarrow \widetilde{A}_{i}
$$

// macro-kernel

Loop 2 for $j_{r}=0: n_{c}-1$ steps of n_{r} $\mathcal{J}_{r}=j_{r}: j_{r}+n_{r}-1$
Loop 1

$$
\text { for } i_{r}=0: m_{c}-1 \text { steps of } m_{r}
$$

$$
\mathcal{I}_{r}=i_{r}: i_{r}+m_{r}-1
$$

Loop 0 //micro-kernel for $p_{r}=0: p_{c}-1$ steps of 1

$$
M_{r}\left(\mathcal{I}_{r}, \mathcal{J}_{r}\right)+=\widetilde{A}_{i}\left(\mathcal{I}_{r}, p_{r}\right) \widetilde{B}_{p}\left(p_{r}, \mathcal{J}_{r}\right)
$$

endfor

$$
C\left(\mathcal{I}_{r}+i_{c}, \mathcal{J}_{r}+j_{c}\right)+=\alpha \gamma_{0} M_{r}\left(\mathcal{I}_{r}, \mathcal{J}_{r}\right)
$$

$$
D\left(\mathcal{I}_{r}+i_{c}, \mathcal{J}_{r}+j_{c}\right)+=\alpha \gamma_{1} M_{r}\left(\mathcal{I}_{r}, \mathcal{J}_{r}\right)
$$

endfor endfor endfor endfor endfor
*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn.
"Strassen's Algorithm Reloaded." In SC'16.

$M:=\alpha(X+\delta Y)(V+\varepsilon W) ; \quad C+=\gamma_{0} M ; D+=\gamma_{1} M ;$ $\gamma_{0}, \gamma_{1}, \delta, \varepsilon \in\{-1,0,1\}$.

Loop 5 for $j_{c}=0: n-1$ steps of n_{c}

$$
\mathcal{J}_{c}=j_{c}: j_{c}+n_{c}-1
$$

Loop 4 for $p_{c}=0: k-1$ steps of k_{c}

$$
\mathcal{P}_{c}=p_{c}: p_{c}+k_{c}-1
$$

$$
V\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right)+\epsilon W\left(\mathcal{P}_{c}, \mathcal{J}_{c}\right) \rightarrow \widetilde{B}_{p}
$$

Loop 3 for $i_{c}=0: m-1$ steps of m_{c}

$$
\mathcal{I}_{c}=i_{c}: i_{c}+m_{c}-1
$$

$$
X\left(\mathcal{I}_{c}, \mathcal{P}_{c}\right)+\delta Y\left(\mathcal{I}_{c}, \mathcal{P}_{c}\right) \rightarrow \widetilde{A}_{i}
$$

// macro-kernel

Loop 2 for $j_{r}=0: n_{c}-1$ steps of n_{r} $\mathcal{J}_{r}=j_{r}: j_{r}+n_{r}-1$
Loop 1 for $i_{r}=0: m_{c}-1$ steps of m_{r} $\mathcal{I}_{r}=i_{r}: i_{r}+m_{r}-1$
//micro-kernel

$$
\text { for } p_{r}=0: p_{c}-1 \text { steps of } 1
$$

$$
M_{r}\left(\mathcal{I}_{r}, \mathcal{J}_{r}\right)+=\widetilde{A}_{i}\left(\mathcal{I}_{r}, p_{r}\right) \widetilde{B}_{p}\left(p_{r}, \mathcal{J}_{r}\right)
$$

endfor

$$
\begin{aligned}
& C\left(\mathcal{I}_{r}+i_{c}, \mathcal{J}_{r}+j_{c}\right)+=\alpha \gamma_{0} M_{r}\left(\mathcal{I}_{r}, \mathcal{J}_{r}\right) \\
& D\left(\mathcal{I}_{r}+i_{c}, \mathcal{J}_{r}+j_{c}\right)+=\alpha \gamma_{1} M_{r}\left(\mathcal{I}_{r}, \mathcal{J}_{r}\right)
\end{aligned}
$$

endfor

 endfor endfor endforendfor
*Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn.
"Strassen's Algorithm Reloaded." In SC'16.

Two-level Strassen's Algorithm Reloaded

Assume m, n, and k are all multiples of 4 . Letting

$$
C=\left(\begin{array}{ll|ll}
C_{0,0} & C_{0,1} & C_{0,2} & C_{0,3} \\
C_{1,0} & C_{1,1} & C_{1,2} & C_{1,3} \\
\hline C_{2,0} & C_{2,1} & C_{2,2} & C_{2,3} \\
C_{3,0} & C_{3,1} & C_{3,2} & C_{3,3}
\end{array}\right), A=\left(\begin{array}{cc|cc}
A_{0,0} & A_{0,1} & A_{0,2} & A_{0,3} \\
A_{1,0} & A_{1,1} & A_{1,2} & A_{1,3} \\
\hline A_{2,0} & A_{2,1} & A_{2,2} & A_{2,3} \\
A_{3,0} & A_{3,1} & A_{3,2} & A_{3,3}
\end{array}\right), B=\left(\begin{array}{ll|ll}
B_{0,0} & B_{0,1} & B_{0,2} & B_{0,3} \\
B_{1,0} & B_{1,1} & B_{1,2} & B_{1,3} \\
\hline B_{2,0} & B_{2,1} & B_{2,2} & B_{2,3} \\
B_{3,0} & B_{3,1} & B_{3,2} & B_{3,3}
\end{array}\right),
$$

where $C_{i, j}$ is $\frac{m}{4} \times \frac{n}{4}, A_{i, p}$ is $\frac{m}{4} \times \frac{k}{4}$, and $B_{p, j}$ is $\frac{k}{4} \times \frac{n}{4}$.

Two-level Strassen’s Algorithm Reloaded (Continue)

$M_{0}:=\alpha\left(A_{0,0}+A_{2,2}+A_{1,1}+A_{3,3}\right)\left(B_{0,0}+B_{2,2}+B_{1,1}+B_{3,3}\right) ;$	$C_{0,0}+=M_{0}$;	$C_{1,1}+=M_{0}$;	$C_{2,2}+=M_{0}$;	$C_{3,3}+=M_{0}$;
$M_{1}:=\alpha\left(A_{1,0}+A_{3,2}+A_{1,1}+A_{3,3}\right)\left(B_{0,0}+B_{2,2}\right)$;	$C_{1,0}+=M_{1}$;	$C_{1,1}-=M_{1}$	$C_{3,2}+=M_{1}$;	$C_{3,3}=1 M_{1}$;
$M_{2}:=\alpha\left(A_{0,0}+A_{2,2}\right)\left(B_{0,1}+B_{2,3}+B_{1,1}+B_{3,3}\right)$;	$C_{0,1}+=M_{2}$;	$C_{1,1}+=M_{2}$;	$C_{2,3}+=M_{2}$;	$C_{3,3}+=M_{2}$
$M_{3}:=\alpha\left(A_{1,1}+A_{3,3}\right)\left(B_{1,0}+B_{3,2}+B_{0,0}+B_{2,2}\right)$;	$C_{0,0}+=M_{3}$;	$C_{1,0}+=M_{3}$;	$C_{2,2}+=M_{3}$;	$C_{3,2}+=M_{3}$;
$M_{4}:=\alpha\left(A_{0,0}+A_{2,2}+A_{0,1}+A_{2,3}\right)\left(B_{1,1}+B_{3,3}\right)$;	$C_{0,0}-=M_{4}$;	$C_{0,1}+=M_{4}$;	$C_{2,2}-=M_{4}$;	$C_{2,3}+=M_{4}$;
$M_{5}:=\alpha\left(A_{1,0}+A_{3,2}+A_{0,0}+A_{2,2}\right)\left(B_{0,0}+B_{2,2}+B_{0,1}+B_{2,3}\right) ;$	$C_{1,1}+=M_{5}$;	$C_{3,3}+=M_{5}$;		
$M_{6}:=\alpha\left(A_{0,1}+A_{2,3}+A_{1,1}+A_{3,3}\right)\left(B_{1,0}+B_{3,2}+B_{1,1}+B_{3,3}\right) ;$	$C_{0,0}+=M_{6}$;	$C_{2,2}+=M_{6}$;		
$M_{7}:=\alpha\left(A_{2,0}+A_{2,2}+A_{3,1}+A_{3,3}\right)\left(B_{0,0}+B_{1,1}\right)$;	$C_{2,0}+=M_{7}$;	$C_{3,1}+=M_{7}$;	$C_{2,2}-=M_{7}$;	$C_{3,3}-=M_{7}$;
$M_{8}:=\alpha\left(A_{3,0}+A_{3,2}+A_{3,1}+A_{3,3}\right)\left(B_{0,0}\right)$;	$C_{3,0}+=M_{8}$;	$C_{3,1}-=M_{8}$	$C_{3,2}-=M_{8}$;	$C_{3,3}+=M_{8}$;
$M_{9}:=\alpha\left(A_{2,0}+A_{2,2}\right)\left(B_{0,1}+B_{1,1}\right) ;$	$C_{2,1}+=M_{9}$;	$C_{3,1}+=M_{9}$;	$C_{2,3}-=M_{9}$;	$C_{3,3}-=M_{9}$;
$M_{10}:=\alpha\left(A_{3,1}+A_{3,3}\right)\left(B_{1,0}+B_{0,0}\right)$;	$C_{2,0}+=M_{10}$;	$C_{3,0}+=M_{10}$;	$C_{2,2}-=M_{10}$;	$C_{3,2}-=M_{10}$;

$M_{40}:=\alpha\left(A_{3,0}+A_{1,0}+A_{2,0}+A_{0,0}\right)\left(B_{0,0}+B_{0,2}+B_{0,1}+B_{0,3}\right) ;$
$M_{41}:=\alpha\left(A_{2,1}+A_{0,1}+A_{3,1}+A_{1,1}\right)\left(B_{1}, 0+B_{1,2}+B_{1,1}+B_{1,3}\right) ;$
$M_{42}:=\alpha\left(A_{0,2}+A_{2,2}+A_{1,3}+A_{3,3}\right)\left(B_{2,0}+B_{2,2}+B_{3,1}+B_{3,3}\right) ;$
$M_{43}:=\alpha\left(A_{1,2}+A_{3,2}+A_{1,3}+A_{3,3}\right)\left(B_{2,0}+B_{2,2}\right) ;$
$M_{44}:=\alpha\left(A_{0,2}+A_{2,2}\right)\left(B_{2,1}+B_{2,3}+B_{3,1}+B_{3,3}\right) ;$
$M_{45}:=\alpha\left(A_{1,3}+A_{3,3}\right)\left(B_{3,0}+B_{3,2}+B_{2,0}+B_{2,2}\right) ;$
$M_{46}:=\alpha\left(A_{0,2}+A_{2,2}+A_{0,3}+A_{2,3}\right)\left(B_{3,1}+B_{3,3}\right) ;$
$M_{47}:=\alpha\left(A_{1,2}+A_{3,2}+A_{0,2}+A_{2,2}\right)\left(B_{2,0}+B_{2,2}+B_{2,1}+B_{2,3}\right) ;$
$M_{48}:=\alpha\left(A_{0,3}+A_{2,3}+A_{1,3}+A_{3,3}\right)\left(B_{3,0}+B_{3,2}+B_{3,1}+B_{3,3}\right) ;$
$C_{3,3}+=M_{40}$;
$C_{2,2}+=M_{41}$; $C_{0,0}+=M_{42}$
$C_{1,1}+=M_{42}$;
$C_{1,0}+=M_{43} ; \quad C_{1,1}-=M_{43} ;$
$C_{0,1}+=M_{44} ; \quad C_{1,1}+=M_{44} ;$
$C_{0,0^{+}}=M_{45} ; \quad C_{1,0}+=M_{45}$;
$C_{0,0}-=M_{46}$
$C_{0,1}+=M_{46}$;

General operation for two-level Strassen:
$M:=\alpha\left(X_{0}+\delta_{1} X_{1}+\delta_{2} X_{2}+\delta_{3} X_{3}\right)\left(V+\varepsilon_{1} V_{1}+\varepsilon_{2} V_{2}+\varepsilon_{3} V_{3}\right) ;$
$C_{0}+=\gamma_{0} M ;$
$C_{1}+=\gamma_{1} M ;$
$C_{2}+=\gamma_{2} M ;$
$C_{3}+=\gamma_{3} M ;$
$\gamma_{i j} \delta_{j,} \varepsilon_{i} \in\{-1,0,1\}$.

Additional Levels of Strassen Reloaded

- The general operation of one-level Strassen:

$$
\begin{aligned}
& M:=\alpha(X+\delta Y)(V+\varepsilon W) ; \quad C+=\gamma_{0} M ; D+=\gamma_{1} M ; \\
& \gamma_{0}, \gamma_{1}, \delta, \varepsilon \in\{-1,0,1\} .
\end{aligned}
$$

- The general operation of two-level Strassen:

$$
\begin{aligned}
& M:=\alpha\left(X_{0}+\delta_{1} X_{1}+\delta_{2} X_{2}+\delta_{3} X_{3}\right)\left(V+\varepsilon_{1} V_{1}+\varepsilon_{2} V_{2}+\varepsilon_{3} V_{3}\right) ; \\
& C_{0}+=\gamma_{0} M ; C_{1}+=\gamma_{1} M ; C_{2}+=\gamma_{2} M ; C_{3}+=\gamma_{3} M ; \\
& \gamma_{i}, \delta_{i}, \varepsilon_{i} \in\{-1,0,1\} .
\end{aligned}
$$

- The general operation needed to integrate k levels of Strassen is given by

$$
\begin{aligned}
& M:=\alpha\left(\sum_{s=0}^{I_{X}-1} \delta_{s} X_{s}\right)\left(\sum_{t=0}^{I_{v}-1} \epsilon_{t} V_{t}\right) ; \\
& C_{r}+=\gamma_{r} M \text { for } r=0, \ldots, I_{C}-1 \\
& \delta_{i}, \epsilon_{i}, \gamma_{i} \in\{-1,0,1\} .
\end{aligned}
$$

Building blocks

$$
\begin{aligned}
& M:=\alpha\left(\sum_{s=0}^{I_{x}-1} \delta_{s} X_{s}\right)\left(\sum_{t=0}^{I_{v}-1} \epsilon V_{t}\right) ; \\
& C_{r}+=\gamma_{r} M \text { for } r=0, \ldots, I_{C}-1 ; \\
& \delta_{i}, \epsilon_{i}, \gamma_{i} \in\{-1,0,1\} .
\end{aligned}
$$

BLIS framework

- A routine for packing B_{p} into \widetilde{B}_{p}
> written in $\mathrm{C} /$ Intel intrinsics
- A routine for packing A_{i} into \bar{A}_{i}
> written in $\mathrm{C} /$ Intel intrinsics
- A micro-kernel for updating an $m_{R} \times n_{R}$ submatrix of C.
> written in SIMD assembly (AVX, FMA, AVX512, etc)

Adapted to general operation

- Integrate the addition of multiple matrices V_{t} into \bar{B}_{p}
- Integrate the addition of multiple matrices X_{s} into A_{i}
- Integrate the update of multiple submatrices of C.

Variations on a theme

- Naïve Strassen
> A traditional implementation with temporary buffers.
- AB Strassen
$>$ Integrate the addition of matrices into \bar{A}_{i} and \bar{B}_{p}.
- ABC Strassen
$>$ Integrate the addition of matrices into \bar{A}_{i} and \bar{B}_{p}.
$>$ Integrate the update of multiple submatrices of C in the micro-kernel.

Parallelization

- $\quad 3^{\text {rd }}$ loop (along m_{C} direction)

- $\quad 2^{\text {nd }}$ loop (along n_{R} direction)

- both $3^{\text {rd }}$ and $2^{\text {nd }}$ loop

*Tyler M. Smith, Robert Van De Geijn, Mikhail Smelyanskiy, Jeff R. Hammond, and Field G. Van Zee. "Anatomy of high-performance many-threaded matrix multiplication." In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, pp. 1049-1059. IEEE, 2014.

Outline

- Standard Matrix-matrix multiplication
- Strassen's Algorithm Reloaded
- Theoretical Model and Analysis
- Performance Experiments
- Conclusion

Performance Model

- Performance Metric

$$
\text { Effective GFLOPS }=\frac{2 \cdot m \cdot n \cdot k}{\text { time (in seconds) }} \cdot 10^{-9}
$$

- Total Time Breakdown

$$
T=T_{a}+T_{m}
$$

Arithmetic Operations

$$
T_{a}=T_{a}^{\times}+T_{a}^{A_{+}}+T_{a}^{B_{+}}+T_{a}^{C_{+}}
$$

DGEMM

> No extra additions
$T_{a}=2 m n k \cdot \tau_{a}$

One-level Strassen (ABC, AB, Naïve)
> 7 submatrix multiplications
> 5 extra additions of submatrices of A and B
> 12 extra additions of submatrices of C

$$
\begin{array}{ll}
M_{0}:=\alpha\left(A_{00}+A_{11}\right)\left(B_{00}+B_{11}\right) ; C_{00}+=M_{0} ; C_{11}+=M_{0} ; \\
M_{1} ;=\alpha\left(A_{10} ; A_{11}\right) B_{00} ; & C_{10}+=M_{;} ; C_{11}=M_{1} ; \\
M_{2}:=\alpha A_{00}\left(B_{01}-B_{11}\right) ; & C_{01}+=M_{2} ; C_{11}+=M_{2 ;} ; \\
M_{3}:=\alpha A_{11}\left(B_{10}-B_{00}\right) ; & C_{00}+=M_{3} ; C_{10}+=M_{3} ; \\
M_{4}: \alpha \alpha\left(A_{00}+A_{01}\right) B_{11} ; & C_{01}+M_{4 ;} C_{00}=M_{4} ; \\
\left.M_{5}: \alpha \alpha A_{10} A_{00}\right)\left(B_{00}+B_{01}\right) ; C_{11}+M_{5} \\
M_{6}:=\alpha\left(A_{01}-A_{11}\right)\left(B_{10}+B_{11}\right) ; C_{00}+=M_{6} ;
\end{array}
$$

$T_{a}=\left(7 \times 2 \frac{m}{2} \frac{n}{2} \frac{k}{2}+5 \times 2 \frac{m}{2} \frac{k}{2}+5 \times 2 \frac{k}{2} \frac{n}{2}+12 \times 2 \frac{m}{2} \frac{n}{2}\right) \cdot \tau_{a}$
Two-level Strassen (ABC, AB, Naïve)
> 49 submatrix multiplications
> 95 extra additions of submatrices of A and B
> 154 extra additions of submatrices of C
$T_{a}=\left(49 \times 2 \frac{m}{4} \frac{n}{4} \frac{k}{4}+95 \times 2 \frac{m}{4} \frac{k}{4}+95 \times 2 \frac{k}{4} \frac{n}{4}+154 \times 2 \frac{m}{4} \frac{n}{4}\right) \cdot \tau_{a}$

Memory Operations

$$
T_{m}=N_{m}^{A_{\times}} \cdot T_{m}^{A_{\times}} \quad+N_{m}^{B_{\times}} \cdot T_{m}^{B_{\times}}+N_{m}^{C_{\times}} \cdot T_{m}^{C_{\times}} \quad+N_{m}^{A_{+}} \cdot T_{m}^{A_{+}}+N_{m}^{B_{+}} \cdot T_{m}^{B_{+}}+N_{m}^{C_{+}} \cdot T_{m}^{C_{+}}
$$

- DGEMM $\quad T_{m}=\left(1 \cdot m k\left\lceil\frac{n}{n_{c}}\right\rceil \quad+1 \cdot n k \quad+1 \cdot 2 \lambda m n\left\lceil\frac{k}{k_{c}}\right\rceil\right.$

$$
T_{m}=\left(1 \cdot m k\left\lceil\frac{n}{n_{c}}\right\rceil \quad+1 \cdot n k \quad+1 \cdot 2 \lambda m n\left\lceil\frac{k}{k_{c}}\right\rceil\right.
$$

- One-level
$>\quad \mathrm{ABC}$ Strassen $\quad T_{m}=\left(12 \cdot \frac{m}{2} \frac{k}{2}\left\lceil\frac{n / 2}{n_{c}}\right\rceil+12 \cdot \frac{n}{2} \frac{k}{2}+12 \cdot 2 \lambda \frac{m}{2} \frac{n}{2}\left\lceil\frac{k / 2}{k_{c}}\right\rceil\right.$
AB Strassen $\quad T_{m}=\left(12 \cdot \frac{m}{2} \frac{k}{2}\left\lceil\frac{n / 2}{n_{c}}\right\rceil+12 \cdot \frac{n}{2} \frac{k}{2}+7 \cdot 2 \lambda \frac{m}{2} \frac{n}{2}\left\lceil\frac{k / 2}{k_{c}}\right\rceil\right.$

$$
\left.+36 \cdot \frac{m}{2} \frac{n}{2}\right) \cdot \tau_{b}
$$

Naïve Strassen $T_{m}=\left(7 \cdot \frac{m}{2} \frac{k}{2}\left\lceil\frac{n / 2}{n_{c}}\right\rceil+7 \cdot \frac{n}{2} \frac{k}{2}+7 \cdot 2 \lambda \frac{m}{2} \frac{n}{2}\left\lceil\frac{k / 2}{k_{c}}\right\rceil \quad+19 \cdot \frac{m}{2} \frac{k}{2}+19 \cdot \frac{n}{2} \frac{k}{2}+36 \cdot \frac{m}{2} \frac{n}{2}\right) \cdot \tau_{b}$

- Two-level

ABC Strassen $\quad T_{m}=\left(194 \cdot \frac{m}{4} \frac{k}{4}\left\lceil\frac{n / 4}{n_{c}}\right\rceil+194 \cdot \frac{n}{4} \frac{k}{4}+154 \cdot 2 \lambda \frac{m}{4} \frac{n}{4}\left\lceil\frac{k / 4}{k_{c}}\right\rceil\right.$
> AB Strassen

$$
\begin{equation*}
T_{m}=\left(194 \cdot \frac{m}{4} \frac{k}{4}\left\lceil\frac{n / 4}{n_{c}}\right\rceil+194 \cdot \frac{n}{4} \frac{k}{4}+49 \cdot 2 \lambda \frac{m}{4} \frac{n}{4}\left\lceil\frac{k / 4}{k_{c}}\right\rceil\right. \tag{b}
\end{equation*}
$$

$$
\left.+462 \cdot \frac{m}{4} \frac{n}{4}\right) \cdot \tau_{b}
$$

$>$ Naïve Strassen $T_{m}=\left(49 \cdot \frac{m}{4} \frac{k}{4}\left\lceil\frac{n / 4}{n_{c}}\right\rceil+49 \cdot \frac{n}{4} \frac{k}{4}+49 \cdot 2 \lambda \frac{m}{4} \frac{n}{4}\left\lceil\frac{k / 4}{k_{c}}\right\rceil+293 \cdot \frac{m}{4} \frac{k}{4}+293 \cdot \frac{n}{4} \frac{k}{4}+462 \cdot \frac{m}{4} \frac{n}{4}\right) \cdot \tau_{b}$

Modeled and Actual Performance on Single Core

Observation (Square Matrices)

Modeled Performance

Actual Performance

Observation (Square Matrices)

Modeled Performance

Actual Performance

Observation (Square Matrices)

Modeled Performance

Actual Performance

Observation (Square Matrices)

Modeled Performance

Actual Performance

Observation (Square Matrices)

Modeled Performance

Actual Performance

Observation (Square Matrices)

Modeled Performance

Actual Performance

Theoretical Speedup over DGEMM

- One-level Strassen ($1+14.3 \%$ speedup)
> 8 multiplications $\rightarrow 7$ multiplications;
- Two-level Strassen ($1+30.6 \%$ speedup)
> 64 multiplications $\rightarrow 49$ multiplications;

Observation (Square Matrices)

- Both one-level and two-level
> For small square matrices, ABC Strassen outperforms AB Strassen
> For larger square matrices, this trend reverses
- Reason
> ABC Strassen avoids storing M (M resides in the register) \because
$>$ ABC Strassen increases the number of times for updating submatrices of C

Observation (Square Matrices)

- Both one-level and two-level
> For small square matrices, ABC Strassen outperforms AB Strassen
> For larger square matrices, this trend reverses
- Reason
> ABC Strassen avoids storing M (M resides in the register) \because
$>$ ABC Strassen increases the number of times for updating submatrices of C

Observation (Rank-k Update)

- What is Rank-k update?

Observation (Rank-k Update)

- Importance of Rank-k update

Gaussian Elimination is not Optimal

Volker Strassen *

Received December 12, 1968

1. Below we will give an algorithm which computes the coefficients of the product of two square matrices A and B of order n from the coefficients of A and B with less than $4.7 \cdot n^{\log 7}$ arithmetical operations (all logarithms in this paper are for base 2 , thus $\log 7 \approx 2.8$; the usual method requires approximately $2 n^{3}$ arithmetical operations). The algorithm induces algorithms for inverting a matrix of order n, solving a system of n linear equations in n unknowns, computing a determinant of order n etc. all requiring less than const $n^{\log 7}$ arithmetical operations.

This fact should be compared with the result of Klyuyev and KokovkinShcherbak [1] that Gaussian elimination for solving a system of linearequations is optimal if one restricts oneself to operations upon rows and columns as a whole. We also note that Winograd [2] modifies the usual algorithms for matrix multiplication and inversion and for solving systems of linear equations, trading roughly half of the multiplications for additions and subtractions.

It is a pleasure to thank D. Brillivger for inspiring discussions about the presen It is a pleasure to thank D. Brillinger for inspiring discussions about the pre
subject and ST. Cook and B. PArletr for encouraging me to write this paper.
2. We define algorithms $\alpha_{m, k}$ which multiply matrices of order $m 2^{k}$, by in 2. We define algorithms $\alpha_{m, k}$ which multiply matrices of order $m 2^{h}$, by in-
duction on $k: \alpha_{m, 0}$ is the usual algorithm for matrix multiplication (requiring duction on $k: \alpha_{m, 0}$ is the usual algorithm for matrix multiplication (requiring
m^{3} multiplications and $m^{2}(m-1)$ additions). $\alpha_{m, k}$ already being known, define $\alpha_{m, k+1}$ as follows:

If A, B are matrices of order $m 2^{k+1}$ to be multiplied, write

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right), \quad A B=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right),
$$

where the $A_{i k}, B_{i k}, C_{i k}$ are matrices of order $m 2^{k}$. Then compute

$$
\begin{aligned}
& \mathrm{I}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right), \\
& \mathrm{II}=\left(A_{21}+A_{22}\right) B_{11}, \\
& \mathrm{III}=A_{11}\left(B_{12}-B_{22}\right), \\
& \mathrm{IV}=A_{22}\left(-B_{11}+B_{21}\right), \\
& \mathrm{V}=\left(A_{11}+A_{12}\right) B_{22}, \\
& \mathrm{VI}=\left(-A_{11}+A_{21}\right)\left(B_{11}+B_{12}\right), \\
& \mathrm{VII}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right),
\end{aligned}
$$

* The results have been found while the author was at the Department of Statistic of the University of California, Berkeley. The author wishes to thank the National Science Foundation for their support (NSF GP-7454).

Blocked LU with partial pivoting (getrf)

Continue with

$$
\begin{aligned}
& \left(\frac{p_{T}}{p_{B}}\right) \leftarrow\left(\frac{p_{0}}{p_{1}} p_{2}\right) \\
& \text { endwhile }
\end{aligned}
$$

Observation (Rank-k Update)

- Importance of Rank-k update

$$
+=\quad x
$$

Observation (Rank-k Update)

Modeled Performance

Actual Performance

$m=n=16000, k$ varies, 1 core, modeled

$\mathrm{m}=\mathrm{n}=16000, \mathrm{k}$ varies, 1 core

Observation (Rank-k Update)

Modeled Performance

Actual Performance

Observation (Rank-k Update)

Modeled Performance

Actual Performance

Observation (Rank-k Update)

Modeled Performance

Actual Performance

$\mathrm{m}=\mathrm{n}=16000, \mathrm{k}$ varies, 1 core, modeled

$m=n=16000, k$ varies, 1 core

Observation (Rank-k Update)

Modeled Performance

Actual Performance

Observation (Rank-k Update)

Modeled Performance

$m=n=16000, k$ varies, 1 core, modeled

- Reason:

ABC Strassen avoids forming the temporary matrix M explicitly in the memory (M resides in register), especially important when $m, n \gg k$.

Outline

- Standard Matrix-matrix multiplication
- Strassen's Algorithm Reloaded
- Theoretical Model and Analysis
- Performance Experiments
- Conclusion

Single Node Experiment

Many-core Experiment

Intel® Xeon Phi ${ }^{\text {TM }}$ coprocessor (KNC)

Distributed Memory Experiment

$\mathrm{m}=\mathrm{k}=\mathrm{n}=16000 \cdot \mathrm{~N}$ on $\mathrm{N} \times \mathrm{N}$ MPI mesh 1 MPI process per socket

$\mathrm{m}=\mathrm{k}=\mathrm{n}=16000 \cdot \mathrm{~N}$ on $\mathrm{N} \times \mathrm{N}$ MPI mesh 1 MPI process per socket

Outline

- Standard Matrix-matrix multiplication
- Strassen's Algorithm Reloaded
- Theoretical Model and Analysis
- Performance Experiments
- Conclusion

To achieve practical high performance of Strassen's algorithm......

Conventional Implementations

Our Implementations

Matrix Size Must be large $\quad \cdot$
c $+=A \times$ B

Matrix Shape
Must be square \bullet

No Additional Workspace

Parallelism
Usually task parallelism \because
Can be data parallelism \bullet^{\bullet}

Acknowledgement

- NSF grants ACI-1148125/1340293, CCF-1218483.
- Intel Corporation through an Intel Parallel Computing Center (IPCC).
- Access to the Maverick and Stampede supercomputers administered by TACC.

We thank Field Van Zee, Chenhan Yu, Devin Matthews, and the rest of the SHPC team (http://shpc.ices.utexas.edu) for their supports.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Thank you!

[^0]: \square Chenhan D. Yu, Jianyu Huang, Woody Austin, Bo Xiao, and George Biros. "Performance Optimization for the k-Nearest Neighbors Kernel on x86 Architectures." In SC'15.
 \square Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn. "Strassen's Algorithm Reloaded." In SC'16.
 \square Devin Matthews. "High-Performance Tensor Contraction without BLAS.", arXiv:1607.00291
 \square Paul Springer, Paolo Bientinesi. "Design of a High-performance GEMM-like Tensor-Tensor Multiplication", arXiv:1607.00145

