

Strassen's Algorithm Reloaded

Jianyu Huang, Tyler M. Smith, Greg M. Henry, Robert A. van de Geijn

The University of Texas at Austin, Intel

Salt Lake City, UT November 16th, 2016

*Overlook of the Bay Area. Photo taken in Mission Peak Regional Preserve, Fremont, CA. Summer 2014.

STRASSEN, Volker Strassen (Born in 1936, aged 80) from 30,000 feetOriginal Strassen Paper (1969)Numer. Math. 13, 354–356 (1969)

Gaussian Elimination is not Optimal

VOLKER STRASSEN*

Received December 12, 1968

1. Below we will give an algorithm which computes the coefficients of the product of two square matrices A and B of order n from the coefficients of A and B with less than $4.7 \cdot n^{\log 2}$ arithmetical operations (all logarithms in this paper are for base 2, thus $\log 7 \approx 2.8$; the usual method requires approximately $2n^3$ arithmetical operations). The algorithm induces algorithms for inverting a matrix of order n, solving a system of n linear equations in n unknowns, computing a determinant of order n etc. all requiring less than const $n^{\log 7}$ arithmetical operations.

This fact should be compared with the result of KLYUYEV and KOKOVKIN-SHCHERBAR [4] that Gaussian elimination for solving a system of linear equations is optimal if one restricts oneself to operations upon rows and columns as a whole. We also note that WINOGRAD [2] modifies the usual algorithms for matrix multiplication and inversion and for solving systems of linear equations, trading roughly half of the multiplications for additions and subtractions.

It is a pleasure to thank D. BRILLINGER for inspiring discussions about the present subject and St. Cook and B. PARLETT for encouraging me to write this paper.

2. We define algorithms $\alpha_{m,k}$ which multiply matrices of order $m2^k$, by induction on $k: \alpha_{m,0}$ is the usual algorithm for matrix multiplication (requiring m^0 multiplications and $m^2(m-1)$ additions). $\alpha_{m,k}$ already being known, define $\alpha_{m,k+1}$ as follows:

If A, B are matrices of order $m2^{k+1}$ to be multiplied, write

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad A B = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix},$$

where the A_{ik} , B_{ik} , C_{ik} are matrices of order $m2^k$. Then compute

I	$= (A_{11} + A_{22}) (B_{11} + B_{22}),$
II	$= (A_{21} + A_{22}) B_{11},$
III	$=A_{11}(B_{12}-B_{22}),$
IV	$=A_{22}(-B_{11}+B_{21}),$
v	$= (A_{11} + A_{12}) B_{22},$
VI	$= (-A_{11} + A_{21})(B_{11} + B_{12})$
VI	$\mathbf{I} = (A_{12} - A_{22}) (B_{21} + B_{22}),$

* The results have been found while the author was at the Department of Statistics of the University of California, Berkeley. The author wishes to thank the National Science Foundation for their support (NSF GP-7454).

One-level Strassen's Algorithm (In theory)

Assume *m*, *n*, and *k* are all even. *A*, *B*, and *C* are $m \times k$, $k \times n$, $m \times n$ matrices, respectively. Letting

$$C = \begin{pmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{pmatrix}, A = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$
We can compute $C := C + AB$ by
$$Direct Computation$$

$$C_{00} := A_{00}B_{00} + A_{01}B_{10} + C_{00};$$

$$C_{01} := A_{00}B_{01} + A_{01}B_{11} + C_{01};$$

$$C_{10} := A_{10}B_{00} + A_{11}B_{10} + C_{10};$$

$$C_{11} := A_{10}B_{01} + A_{11}B_{11} + C_{11};$$
8 multiplications, 8 additions
$$C = \begin{pmatrix} C_{00} & C_{01} \\ A_{10} & A_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$

$$B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$

$$B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$

$$B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$

$$B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$

$$B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$

$$B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{11} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{11} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{11} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{11} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{11} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{00} & B_{11} \\ B_{10} & B_{11} \\ B_{10} & B_{11} \end{pmatrix}, B = \begin{pmatrix} B_{10} & B_{11} \\ B_{10} & B_{11} \\ B_{10} & B_{11}$$

*Strassen, Volker. "Gaussian elimination is not optimal." Numerische Mathematik 13, no. 4 (1969): 354-356.

Multi-level Strassen's Algorithm (In theory)

 $M_{0} := (A_{00} + A_{11})(B_{00} + B_{11});$ $M_{1} := (A_{10} + A_{11})B_{00};$ $M_{2} := A_{00}(B_{01} - B_{11});$ $M_{3} := A_{11}(B_{10} - B_{00});$ $M_{4} := (A_{00} + A_{01})B_{11};$ $M_{5} := (A_{10} - A_{00})(B_{00} + B_{01});$ $M_{6} := (A_{01} - A_{11})(B_{10} + B_{11});$ $C_{00} + = M_{0} + M_{3} - M_{4} + M_{6}$ $C_{01} + = M_{2} + M_{4}$ $C_{10} + = M_{1} + M_{3}$ $C_{11} + = M_{0} - M_{1} + M_{2} + M_{5}$

- One-level Strassen (1+14.3% speedup)
 > 8 multiplications → 7 multiplications ;
- Two-level Strassen (1+30.6% speedup)
 ▶ 64 multiplications → 49 multiplications;
- *d*-level Strassen (*n*³/*n*^{2.803} speedup)
 - > 8^d multiplications \rightarrow 7^d multiplications; If originally $m = n = k = 2^d$, where d is an integer, then the cost becomes $(7/8)^{\log_2(n)} 2n^3 = n^{\log_2(7/8)} 2n^3 \approx 2n^{2.807}$ flops.

Multi-level Strassen's Algorithm (In theory)

 $M_{0} := (A_{00} + A_{11})(B_{00} + B_{11});$ $M_{1} := (A_{10} + A_{11})B_{00};$ $M_{2} := A_{00}(B_{01} - B_{11});$ $M_{3} := A_{11}(B_{10} - B_{00});$ $M_{4} := (A_{00} + A_{01})B_{11};$ $M_{5} := (A_{10} - A_{00})(B_{00} + B_{01});$ $M_{6} := (A_{01} - A_{11})(B_{10} + B_{11});$ $C_{00} + = M_{0} + M_{3} - M_{4} + M_{6}$ $C_{01} + = M_{2} + M_{4}$ $C_{10} + = M_{1} + M_{3}$ $C_{11} + = M_{0} - M_{1} + M_{2} + M_{5}$

- One-level Strassen (1+14.3% speedup)
 - \blacktriangleright 8 multiplications \rightarrow 7 multiplications ;
- Two-level Strassen (1+30.6% speedup)
 - \succ 64 multiplications \rightarrow 49 multiplications;
- d-level Strassen (n³/n^{2.803} speedup)
 - > 8^d multiplications $\rightarrow 7^d$ multiplications;

Strassen's Algorithm (In practice)

 $M_{0} := (A_{00} + A_{11})(B_{00} + B_{11});$ $M_{1} := (A_{10} + A_{11})B_{00};$ $M_{2} := A_{00}(B_{01} - B_{11});$ $M_{3} := A_{11}(B_{10} - B_{00});$ $M_{4} := (A_{00} + A_{01})B_{11};$ $M_{5} := (A_{10} - A_{00})(B_{00} + B_{01});$ $M_{6} := (A_{01} - A_{11})(B_{10} + B_{11});$ $C_{00} + = M_{0} + M_{3} - M_{4} + M_{6}$ $C_{01} + = M_{2} + M_{4}$ $C_{10} + = M_{1} + M_{3}$

 $C_{11} += M_0 - M_1 + M_2 + M_5$

Strassen's Algorithm (In practice)

 $M_{0} := (\overline{A_{00}}_{T_{2}}^{+}A_{11})(\overline{B_{00}}_{00}^{+}B_{11}^{-});$ $M_{1} := (\overline{A_{10}}^{+}A_{11})B_{00};$ $M_{2} := A_{00}(\overline{B_{01}}_{T_{4}}^{-}B_{11}^{-});$ $M_{3} := A_{11}(\overline{B_{10}}^{-}B_{00}^{-});$ $M_{4} := (\overline{A_{00}}^{+}A_{01})B_{11};$ $M_{5} := (\overline{A_{10}}_{T_{6}}^{-}A_{00})(\overline{B_{00}}_{T_{9}}^{+}B_{01}^{-});$ $M_{6} := (\overline{A_{01}}^{-}A_{11})(\overline{B_{10}}^{+}B_{11}^{-});$ $C_{00} + = M_{0} + M_{3} - M_{4} + M_{6}$ $C_{01} + = M_{1} + M_{3}$

- One-level Strassen (1+14.3% speedup)
 - 7 multiplications + 22 additions;
- Two-level Strassen (1+30.6% speedup)
 - 49 multiplications + 344 additions;

Strassen's Algorithm (In practice) $M_{0} := (\overline{A_{00} + A_{11}})(\overline{B_{00} + B_{11}});$

 $M_1 := (A_{10} + A_{11})B_{00};$

 $M_2 := A_{00}(\mathcal{B}_{01\tau}^{-31}\mathcal{B}_{11});$

 $M_3 := A_{11} (\underline{B}_{10} - B_{00});$

 $C_{01} + = M_2 + M_4$

 $M_4 := (A_{00T}^{+3} + A_{01}) B_{11};_{T}$

 $M_5 := (\overline{A_{10\pi}} A_{00}) (\overline{B_{00\pi}} B_{01});$

 $M_6 := (\overline{A_{01} - A_{11}})(\overline{B_{10} + B_{11}});$

 $C_{00} + = M_0 + M_3 - M_4 + M_6$

- One-level Strassen (1+14.3% speedup)
 - > 7 multiplications + 22 additions;
- Two-level Strassen (1+30.6% speedup)
 - ➢ 49 multiplications + 344 additions;
- d-level Strassen (n³/n^{2.803} speedup)
 - Numerical unstable; Not achievable

Outline

- Standard Matrix-matrix multiplication
- Strassen's Algorithm Reloaded
- Theoretical Model and Analysis
- Performance Experiments
- Conclusion

Level-3 BLAS Matrix-Matrix Multiplication (GEMM)

• (General) matrix-matrix multiplication (GEMM) is supported in the level-3 BLAS* interface as

dgemm(transa, transb, m, n, k,

alpha, A, lda, B, ldb,

beta, C, ldc)

• Ignoring transa and transb, GEMM computes

 $C := \alpha AB + \beta C;$

• We consider the simplified version of GEMM

 $C := \alpha AB + C$

State-of-the-art **GEMM** in **BLIS**

• BLAS-like Library Instantiation Software (BLIS) is a portable framework for instantiating BLAS-like dense linear algebra libraries.

Field Van Zee, and Robert van de Geijn. "BLIS: A Framework for Rapidly Instantiating BLAS Functionality." ACM TOMS 41.3 (2015): 14.

• BLIS provides a refactoring of GotoBLAS algorithm (best-known approach) to implement GEMM.

□ Kazushige Goto, and Robert van de Geijn. "High-performance implementation of the level-3 BLAS." *ACM TOMS* 35.1 (2008): 4. □ Kazushige Goto, and Robert van de Geijn. "Anatomy of high-performance matrix multiplication." *ACM TOMS* 34.3 (2008): 12.

- GEMM implementation in BLIS has 6-layers of loops. The outer 5 loops are written in C. The inner-most loop (micro-kernel) is written in assembly for high performance.
 - > Partition matrices into smaller blocks to fit into the different memory hierarchy.
 - The order of these loops is designed to utilize the cache reuse rate.

State-of-the-art **GEMM** in **BLIS**

• BLAS-like Library Instantiation Software (BLIS) is a portable framework for instantiating BLAS-like dense linear algebra libraries.

Field Van Zee, and Robert van de Geijn. "BLIS: A Framework for Rapidly Instantiating BLAS Functionality." ACM TOMS 41.3 (2015): 14.

 BLIS provides a refactoring of GotoBLAS algorithm (best-known approach) to implement GEMM.

□ Kazushige Goto, and Robert van de Geijn. "High-performance implementation of the level-3 BLAS." *ACM TOMS* 35.1 (2008): 4. □ Kazushige Goto, and Robert van de Geijn. "Anatomy of high-performance matrix multiplication." *ACM TOMS* 34.3 (2008): 12.

- GEMM implementation in BLIS has 6-layers of loops. The outer 5 loops are written in C. The inner-most loop (micro-kernel) is written in assembly for high performance.
 - > Partition matrices into smaller blocks to fit into the different memory hierarchy.
 - The order of these loops is designed to utilize the cache reuse rate.

• BLIS opens the black box of GEMM, leading to many applications built on BLIS.

- Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn. "Strassen's Algorithm Reloaded." In SC'16.
- Devin Matthews. "High-Performance Tensor Contraction without BLAS.", arXiv:1607.00291
- Paul Springer, Paolo Bientinesi. "Design of a High-performance GEMM-like Tensor-Tensor Multiplication", arXiv:1607.00145

[□] Chenhan D. Yu, Jianyu Huang, Woody Austin, Bo Xiao, and George Biros. "Performance Optimization for the k-Nearest Neighbors Kernel on x86 Architectures." In SC'15.

GotoBLAS algorithm for GEMM in BLIS

main memory

endfor

endfor endfor

for $i_c = 0 : m-1$ steps of m_i $\mathcal{I}_c = i_c : i_c + m_c - 1$ $A(\mathcal{I}_c, \mathcal{P}_c) \rightarrow \widetilde{A}_i$

endfor endfor endfor

endfor endfor endfor endfor

Loop 3 for $i_c = 0 : m-1$ steps of m_c $\mathcal{I}_c = i_c : i_c + m_c - 1$ $A(\mathcal{I}_c, \mathcal{P}_c) \rightarrow \widetilde{A}_i$ // macro-kernelLoop 2 for $j_r = 0 : n_c - 1$ steps of n_r $\mathcal{J}_r = j_r : j_r + n_r - 1$ for $i_r = 0 : m_c - 1$ steps of m_r $\mathcal{I}_r = i_r : i_r + m_r - 1$

> endfor endfor endfor endfor endfor

Outline

- Standard Matrix-matrix multiplication
- Strassen's Algorithm Reloaded
- Theoretical Model and Analysis
- Performance Experiments
- Conclusion

One-level Strassen's Algorithm Reloaded

$$\begin{split} M_{0} &:= \alpha(A_{00} + A_{11})(B_{00} + B_{11}); \\ M_{1} &:= \alpha(A_{10} + A_{11})B_{00}; \\ M_{2} &:= \alpha A_{00}(B_{01} - B_{11}); \\ M_{3} &:= \alpha A_{11}(B_{10} - B_{00}); \\ M_{4} &:= \alpha(A_{00} + A_{01})B_{11}; \\ M_{5} &:= \alpha(A_{10} - A_{00})(B_{00} + B_{01}); \\ M_{6} &:= \alpha(A_{01} - A_{11})(B_{10} + B_{11}); \\ C_{00} &:= M_{0} + M_{3} - M_{4} + M_{6} \\ C_{01} &:= M_{1} + M_{3} \\ C_{11} &:= M_{1} + M_{3} \\ C_{11} &:= M_{0} - M_{1} + M_{2} + M_{5} \end{split}$$

 $M := \alpha$

$$M := \alpha(X+Y)(V+W); \qquad C + = M; \quad D + = M;$$

General operation for one-level Strassen:

$$M := \alpha(X + \delta Y)(V + \varepsilon W); \qquad C + = \gamma_0 M; D + = \gamma_1 M; \gamma_0, \gamma_1, \delta, \varepsilon \in \{-1, 0, 1\}.$$

High-performance implementation of the general operation?

 $M := \alpha(X + \delta Y)(V + \varepsilon W);$ $\gamma_0, \gamma_1, \delta, \varepsilon \in \{-1, 0, 1\}.$ $C += \gamma_0 M; D += \gamma_1 M;$

 $M := \alpha (X + \delta Y) (V + \varepsilon W); \qquad C + = \gamma_0 M; D + = \gamma_1 M;$

 $M := \alpha(X + \delta Y)(V + \varepsilon W); \qquad C + = \gamma_0 M; D + = \gamma_1 M;$ $\gamma_0, \gamma_1, \delta, \varepsilon \in \{-1, 0, 1\}.$

Loop 5 for $j_c = 0 : n-1$ steps of n_c $\mathcal{J}_c = j_c : j_c + n_c - 1$

endfor

 $M := \alpha(X + \delta Y)(V + \varepsilon W); \qquad C + = \gamma_0 M; D + = \gamma_1 M;$ $\gamma_0, \gamma_1, \delta, \varepsilon \in \{-1, 0, 1\}.$

Loop 5 for $j_c = 0 : n-1$ steps of n_c $\mathcal{J}_c = j_c : j_c + n_c - 1$ Loop 4 for $p_c = 0 : k-1$ steps of k_c $\mathcal{P}_c = p_c : p_c + k_c - 1$ $V(\mathcal{P}_c, \mathcal{J}_c) + \epsilon W(\mathcal{P}_c, \mathcal{J}_c) \rightarrow \widetilde{B}_p$

endfor endfor

Loop 5 for $j_c = 0 : n-1$ steps of n_c $\mathcal{J}_c = j_c : j_c + n_c - 1$ Loop 4 for $p_c = 0 : k-1$ steps of k_c $\mathcal{P}_c = p_c : p_c + k_c - 1$ $V(\mathcal{P}_c, \mathcal{J}_c) + \epsilon W(\mathcal{P}_c, \mathcal{J}_c) \rightarrow \widetilde{B}_p$ Loop 3 for $i_c = 0 : m-1$ steps of m_c $\mathcal{I}_c = i_c : i_c + m_c - 1$ $X(\mathcal{I}_c, \mathcal{P}_c) + \delta Y(\mathcal{I}_c, \mathcal{P}_c) \rightarrow \widetilde{A}_i$

endfor endfor endfor

Two-level Strassen's Algorithm Reloaded

Assume m, n, and k are all multiples of 4. Letting

$$C = \begin{pmatrix} C_{0,0} & C_{0,1} & C_{0,2} & C_{0,3} \\ C_{1,0} & C_{1,1} & C_{1,2} & C_{1,3} \\ C_{2,0} & C_{2,1} & C_{2,2} & C_{2,3} \\ C_{3,0} & C_{3,1} & C_{3,2} & C_{3,3} \end{pmatrix}, A = \begin{pmatrix} A_{0,0} & A_{0,1} & A_{0,2} & A_{0,3} \\ A_{1,0} & A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,0} & A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,0} & A_{3,1} & A_{3,2} & A_{3,3} \end{pmatrix}, B = \begin{pmatrix} B_{0,0} & B_{0,1} & B_{0,2} & B_{0,3} \\ B_{1,0} & B_{1,1} & B_{1,2} & B_{1,3} \\ B_{2,0} & B_{2,1} & B_{2,2} & B_{2,3} \\ B_{3,0} & B_{3,1} & B_{3,2} & B_{3,3} \end{pmatrix}$$

ere *C*: is is $\frac{m}{2} \times \frac{n}{2}$ *A*: *n* is $\frac{m}{2} \times \frac{k}{4}$ and *B*_n; is $\frac{k}{4} \times \frac{n}{4}$

,

where $C_{i,j}$ is $\frac{m}{4} \times \frac{n}{4}$, $A_{i,p}$ is $\frac{m}{4} \times \frac{\kappa}{4}$, and $B_{p,j}$ is $\frac{\kappa}{4} \times \frac{n}{4}$.

Two-level Strassen's Algorithm Reloaded (Continue)

$M_0 := \alpha(A_{0,0} + A_{2,2} + A_{1,1} + A_{3,3})(B_{0,0} + B_{2,2} + B_{1,1} + B_{3,3});$	$C_{0,0} += M_0;$	$C_{1,1} + = M_0;$	$C_{2,2} += M_0;$	$C_{3,3} + = M_0;$
$\begin{split} & M_1 \coloneqq \alpha(A_{1,0} + A_{3,2} + A_{1,1} + A_{3,3})(B_{0,0} + B_{2,2}); \\ & M_2 \coloneqq \alpha(A_{0,0} + A_{2,2})(B_{0,1} + B_{2,3} + B_{1,1} + B_{3,3}); \\ & M_3 \coloneqq \alpha(A_{1,1} + A_{3,3})(B_{1,0} + B_{3,2} + B_{0,0} + B_{2,2}); \\ & M_4 \coloneqq \alpha(A_{0,0} + A_{2,2} + A_{0,1} + A_{2,3})(B_{1,1} + B_{3,3}); \\ & M_5 \coloneqq \alpha(A_{1,0} + A_{3,2} + A_{0,0} + A_{2,2})(B_{0,0} + B_{2,2} + B_{0,1} + B_{2,3}); \\ & M_6 \coloneqq \alpha(A_{0,1} + A_{2,3} + A_{1,1} + A_{3,3})(B_{1,0} + B_{3,2} + B_{1,1} + B_{3,3}); \\ & M_7 \coloneqq \alpha(A_{2,0} + A_{2,2} + A_{3,1} + A_{3,3})(B_{0,0} + B_{1,1}); \\ & M_8 \coloneqq \alpha(A_{3,0} + A_{3,2} + A_{3,1} + A_{3,3})(B_{0,0}); \\ & M_9 \coloneqq \alpha(A_{2,0} + A_{2,2})(B_{0,1} + B_{1,1}); \end{split}$	$C_{1,0} = M_{1};$ $C_{0,1} = M_{2};$ $C_{0,0} = M_{3};$ $C_{0,0} = M_{4};$ $C_{1,1} = M_{5};$ $C_{0,0} = M_{6};$ $C_{2,0} = M_{7};$ $C_{3,0} = M_{8};$ $C_{2,1} = M_{9};$	$C_{1,1} = M_{1};$ $C_{1,1} = M_{2};$ $C_{1,0} = M_{3};$ $C_{0,1} = M_{4};$ $C_{3,3} = M_{5};$ $C_{2,2} = M_{6};$ $C_{3,1} = M_{7};$ $C_{3,1} = M_{8};$ $C_{3,1} = M_{9};$	$C_{3,2} += M_1;$ $C_{2,3} += M_2;$ $C_{2,2} += M_3;$ $C_{2,2} -= M_4;$ $C_{2,2} -= M_7;$ $C_{3,2} -= M_8;$ $C_{2,3} -= M_9;$	$C_{3,3} = M_1;$ $C_{3,3} = M_2;$ $C_{3,2} = M_3;$ $C_{2,3} = M_4;$ $C_{3,3} = M_7;$ $C_{3,3} = M_8;$ $C_{3,3} = M_9;$
$M_{10} := \alpha(A_{3,1} + A_{3,3})(B_{1,0} + B_{0,0});$	$C_{2,0} += M_{10};$	$C_{3,0} += M_{10};$	$C_{2,2} = M_{10};$	$C_{3,2} = M_{10};$
$M_{40} := \alpha(A_{3,0} + A_{1,0} + A_{2,0} + A_{0,0})(B_{0,0} + B_{0,2} + B_{0,1} + B_{0,3});$ $M_{41} := \alpha(A_{2,1} + A_{0,1} + A_{3,1} + A_{1,1})(B_{1,0} + B_{1,2} + B_{1,1} + B_{1,3});$ $M_{42} := \alpha(A_{0,2} + A_{2,2} + A_{1,3} + A_{3,3})(B_{2,0} + B_{2,2} + B_{3,1} + B_{3,3});$ $M_{43} := \alpha(A_{1,2} + A_{3,2} + A_{1,3} + A_{3,3})(B_{2,0} + B_{2,2});$ $M_{44} := \alpha(A_{0,2} + A_{2,2})(B_{2,1} + B_{2,3} + B_{3,1} + B_{3,3});$ $M_{45} := \alpha(A_{1,3} + A_{3,3})(B_{3,0} + B_{3,2} + B_{2,0} + B_{2,2});$ $M_{46} := \alpha(A_{0,2} + A_{2,2} + A_{0,3} + A_{2,3})(B_{3,1} + B_{3,3});$ $M_{47} := \alpha(A_{1,2} + A_{3,2} + A_{0,2} + A_{2,2})(B_{2,0} + B_{2,2} + B_{2,1} + B_{2,3});$ $M_{48} := \alpha(A_{0,3} + A_{2,3} + A_{1,3} + A_{3,3})(B_{3,0} + B_{3,2} + B_{3,1} + B_{3,3});$ $M_{48} := \alpha(A_{0,3} + A_{2,3} + A_{1,3} + A_{3,3})(B_{3,0} + B_{3,2} + B_{3,1} + B_{3,3});$	$C_{3,3} = M_{40};$ $C_{2,2} = M_{41};$ $C_{0,0} = M_{42};$ $C_{1,0} = M_{43};$ $C_{0,1} = M_{44};$ $C_{0,0} = M_{45};$ $C_{0,0} = M_{46};$ $C_{1,1} = M_{47};$ $C_{0,0} = M_{48};$	$C_{1,1} += M_{42};$ $C_{1,1} -= M_{43};$ $C_{1,1} += M_{44};$ $C_{1,0} += M_{45};$ $C_{0,1} += M_{46};$	C += M	C += M
$M := \alpha(X_0 + X_1 + X_2 + X_3)(V + V_1 + V_2 + V_3);$	$C_0^{-} + = M;$	$C_1 + = M;$	$C_2 + = M;$	$C_3 += M;$

General operation for two-level Strassen:

 $M := \alpha(X_0 + \delta_1 X_1 + \delta_2 X_2 + \delta_3 X_3)(V + \varepsilon_1 V_1 + \varepsilon_2 V_2 + \varepsilon_3 V_3);$

 $C_1 + = \gamma_1 M;$ $C_0 + = \gamma_0 M;$ $C_2 += \gamma_2 M;$ $C_3 + = \gamma_3 M;$

 $\gamma_{i'}\delta_{i'}\varepsilon_i\in\{-1,\,0,\,1\}.$

Additional Levels of Strassen Reloaded

• The general operation of one-level Strassen:

 $M := \alpha(X + \delta Y)(V + \varepsilon W); \qquad C + = \gamma_0 M; D + = \gamma_1 M;$ $\gamma_0, \gamma_1, \delta, \varepsilon \in \{-1, 0, 1\}.$

• The general operation of two-level Strassen:

 $M := \alpha (X_0 + \delta_1 X_1 + \delta_2 X_2 + \delta_3 X_3) (V + \varepsilon_1 V_1 + \varepsilon_2 V_2 + \varepsilon_3 V_3);$ $C_0 + = \gamma_0 M; C_1 + = \gamma_1 M; C_2 + = \gamma_2 M; C_3 + = \gamma_3 M;$ $\gamma_{ii} \delta_{ii} \varepsilon_i \in \{-1, 0, 1\}.$

 The general operation needed to integrate k levels of Strassen is given by

 $M := \alpha \left(\sum_{s=0}^{l_{X}-1} \delta_{s} X_{s} \right) \left(\sum_{t=0}^{l_{V}-1} \epsilon_{t} V_{t} \right);$ $C_{r} += \gamma_{r} M \text{ for } r = 0, \dots, l_{C} - 1;$ $\delta_{i}, \epsilon_{i}, \gamma_{i} \in \{-1, 0, 1\}.$
Building blocks

BLIS framework

- A routine for packing B_p into \overline{B}_p
 - written in C/Intel intrinsics

- A routine for packing A_i into \widetilde{A}_i
 - > written in C/Intel intrinsics

Ĩi **→**•

- A micro-kernel for updating an $m_R \times n_R$ submatrix of *C*.
 - written in SIMD assembly (AVX, FMA, AVX512, etc)

$$M := \alpha \left(\sum_{s=0}^{l_X-1} \epsilon_s X_s \right) \left(\sum_{t=0}^{l_V-1} \epsilon_t V_t \right);$$

$$C_r + = \gamma_r M \text{ for } r = 0, \dots, l_C - 1;$$

$$\delta_i, \epsilon_i, \gamma_i \in \{-1, 0, 1\}.$$

Adapted to general operation

• Integrate the addition of multiple matrices V_t into \overline{B}_p

- Integrate the addition of multiple matrices X_s into \widetilde{A}_i
- Integrate the update of multiple submatrices of *C*.

Variations on a theme

- Naïve Strassen
 - A traditional implementation with temporary buffers.
- AB Strassen

 \succ Integrate the addition of matrices into \widetilde{A}_i and \overline{B}_p .

- ABC Strassen
 - \succ Integrate the addition of matrices into \widetilde{A}_i and \widetilde{B}_p .
 - Integrate the update of multiple submatrices of C in the micro-kernel.

Parallelization

• 3^{rd} loop (along m_c direction)

- 2nd loop (along n_R direction)
- both 3rd and 2nd loop

*Tyler M. Smith, Robert Van De Geijn, Mikhail Smelyanskiy, Jeff R. Hammond, and Field G. Van Zee. "Anatomy of high-performance many-threaded matrix multiplication." In *Parallel and Distributed Processing Symposium, 2014 IEEE 28th International*, pp. 1049-1059. IEEE, 2014.

Outline

- Standard Matrix-matrix multiplication
- Strassen's Algorithm Reloaded
- Theoretical Model and Analysis
- Performance Experiments
- Conclusion

Performance Model

Performance Metric

$$Effective \ \text{GFLOPS} = \frac{2 \cdot m \cdot n \cdot k}{\text{time (in seconds)}} \cdot 10^{-9}$$

Total Time Breakdown

• DGEMM

No extra additions

 $T_a = 2mnk \cdot \tau_a$

- One-level Strassen (ABC, AB, Naïve)
 - 7 submatrix multiplications
 - 5 extra additions of submatrices of A and B
 - 12 extra additions of submatrices of C
 - $T_{a} = (7 \times 2\frac{m}{2}\frac{n}{2}\frac{k}{2} + 5 \times 2\frac{m}{2}\frac{k}{2} + 5 \times 2\frac{k}{2}\frac{n}{2} + 12 \times 2\frac{m}{2}\frac{n}{2}) \cdot \tau_{a}$
- Two-level Štrassen (ABC, AB, Naïve)
 - 49 submatrix multiplications
 - 95 extra additions of submatrices of A and B
 - > 154 extra additions of submatrices of C $T_a = (49 \times 2\frac{m}{4}\frac{n}{4}\frac{k}{4} + 95 \times 2\frac{m}{4}\frac{k}{4} + 95 \times 2\frac{k}{4}\frac{n}{4} + 154 \times 2\frac{m}{4}\frac{n}{4}) \cdot \tau_a$

$M_0 := \alpha (A_{00} + A_{11}) (B_{00} + B_{11});$; $C_{00} += M_0$; $C_{11} += M_0$;
$M_1 := \alpha (A_{10} + A_{11}) B_{00};$	$C_{10} += M_1; C_{11} -= M_1;$
$M_2 := \alpha A_{00} (B_{01} - B_{11});$	$C_{01} += M_2; C_{11} += M_2;$
$M_3 := \alpha A_{11}(B_{10} - B_{00});$	$C_{00} += M_3; C_{10} += M_3;$
$M_4 := \alpha (A_{00} + A_{01}) B_{11};$	$C_{01} += M_4; C_{00} -= M_4;$
$M_5 := \alpha (A_{10} - A_{00}) (B_{00} + B_{01});$	$C_{11} += M_5;$
$M_6 := \alpha (A_{01} - A_{11}) (B_{10} + B_{11});$	$C_{00} += M_6;$

	$\begin{array}{l} M_0 = (A_{0,0} + A_{2,2} + A_{1,1} + A_{3,3})(B_{0,0} + B_{2,2} + B_{1,1} + B_{3,3});\\ M_1 = (A_{1,0} + A_{2,2})(B_{0,1} + B_{2,3})(B_{0,0} + B_{2,2});\\ M_2 = (A_{0,0} + A_{2,2})(B_{0,1} + B_{2,3} + B_{1,1} + B_{3,3});\\ M_3 = (A_{1,1} + A_{3,3})(B_{1,0} + B_{2,2} + B_{0,0} + B_{2,2});\\ M_4 = (A_{0,0} + A_{2,2} + A_{0,1} + A_{2,3})(B_{1,1} + B_{3,3});\\ M_5 = (A_{1,0} + A_{3,2} + A_{0,0} + A_{2,2})(B_{0,0} + B_{2,2} + B_{0,1} + B_{2,3});\\ M_6 = (A_{0,0} + A_{2,2} + A_{0,1} + A_{3,3})(B_{1,0} + B_{3,2} + B_{1,1} + B_{3,3});\\ M_7 = (A_{2,0} + A_{2,2} + A_{3,1} + A_{3,3})(B_{0,0} + B_{1,1});\\ M_8 = (A_{3,0} + A_{3,2} + A_{3,1} + A_{3,3})(B_{0,0});\\ M_9 = (A_{2,0} + A_{2,2} + A_{3,1} + A_{3,3})(B_{0,0});\\ M_{10} = (A_{3,1} + A_{3,3})(B_{1,0} + B_{0,0}); \end{array}$	$\begin{array}{l} C_{0,0} += M_0;\\ C_{1,0} += M_1;\\ C_{0,1} += M_2;\\ C_{0,0} += M_3;\\ C_{0,0} -= M_4;\\ C_{1,1} += M_5;\\ C_{1,0} += M_6;\\ C_{2,0} += M_7;\\ C_{3,0} += M_8;\\ C_{2,1} += M_9;\\ C_{2,0} += M_{10}; \end{array}$	$\begin{array}{c} C_{1,1} {\mathrel{+}=} M_0;\\ C_{1,1} {\mathrel{-}=} M_1;\\ C_{1,1} {\mathrel{+}=} M_1;\\ C_{1,0} {\mathrel{+}=} M_3;\\ C_{0,1} {\mathrel{+}=} M_4;\\ C_{3,1} {\mathrel{+}=} M_5;\\ C_{2,2} {\mathrel{+}=} M_6;\\ C_{3,1} {\mathrel{+}=} M_7;\\ C_{3,1} {\mathrel{-}=} M_8;\\ C_{3,1} {\mathrel{+}=} M_9;\\ C_{3,0} {\mathrel{+}=} M_0;\\ C_{3,0} {\mathrel{+}=} M_0;\\ \end{array}$	$\begin{array}{c} C_{2,2} += M_0;\\ C_{3,2} += M_1;\\ C_{2,3} += M_2;\\ C_{2,2} += M_3;\\ C_{2,2} -= M_4;\\ \end{array}$	$\begin{array}{c} c_{3,3} += M_0;\\ c_{3,3} == M_1;\\ c_{3,3} += M_2;\\ c_{3,2} += M_3;\\ c_{2,3} += M_4;\\ \end{array}$
3	$ \begin{array}{l} & & \\ M_{40} = (A_{3,0} + A_{1,0} + A_{2,0} + A_{0,0})(B_{0,0} + B_{0,2} + B_{0,1} + B_{0,3}); \\ M_{41} = (A_{2,1} + A_{0,1} + A_{3,1} + A_{1,1})(B_{1,0} + B_{1,2} + B_{1,1} + B_{1,3}); \\ M_{42} = (A_{0,2} + A_{2,2} + A_{1,3} + A_{3,3})(B_{2,0} + B_{2,2}); \\ M_{43} = (A_{1,2} + A_{3,2} + A_{1,3} + A_{3,3})(B_{2,0} + B_{2,2}); \\ M_{44} = (A_{0,2} + A_{2,2})(B_{2,1} + B_{2,3} + B_{3,1}); \\ M_{45} = (A_{1,3} + A_{3,3})(B_{3,0} + B_{3,2} + B_{2,0} + B_{2,3}); \\ M_{46} = (A_{0,2} + A_{2,2} + A_{0,3} + A_{2,3})(B_{3,1} + B_{3,3}); \\ M_{47} = (A_{1,2} + A_{3,2} + A_{0,3} + A_{2,3})(B_{3,0} + B_{3,2} + B_{2,1} + B_{2,3}); \\ M_{46} = (A_{0,3} + A_{2,3} + A_{1,3} + A_{3,3})(B_{3,0} + B_{3,2} + B_{3,1} + B_{3,3}); \\ \end{array} $	$\begin{array}{l} C_{3,3} \!$	$\begin{array}{l} C_{1,1} \!$		

Memory Operations

$$T_{m} = N_{m}^{A_{\times}} \cdot T_{m}^{A_{\times}} + N_{m}^{B_{\times}} \cdot T_{m}^{B_{\times}} + N_{m}^{C_{\times}} \cdot T_{m}^{C_{\times}} + N_{m}^{A_{+}} \cdot T_{m}^{A_{+}} + N_{m}^{B_{+}} \cdot T_{m}^{B_{+}} + N_{m}^{C_{+}} \cdot T_{m}^{C_{+}}$$

$$T_{m} = (1 \cdot mk \lceil \frac{n}{n_{c}} \rceil + 1 \cdot nk + 1 \cdot 2\lambda mn \lceil \frac{k}{k_{c}} \rceil) \cdot \tau_{b}$$

One-level

٠

$$\blacktriangleright \text{ ABC Strassen } T_m = (12 \cdot \frac{m}{2} \frac{k}{2} \lceil \frac{n/2}{n_c} \rceil + 12 \cdot \frac{n}{2} \frac{k}{2} + 12 \cdot 2\lambda \frac{m}{2} \frac{n}{2} \lceil \frac{k/2}{k_c} \rceil) \cdot \tau_b$$

$$\blacktriangleright \quad \mathsf{AB Strassen} \quad T_m = (12 \cdot \frac{m}{2} \frac{k}{2} \lceil \frac{n/2}{n_c} \rceil + 12 \cdot \frac{n}{2} \frac{k}{2} + 7 \cdot 2\lambda \frac{m}{2} \frac{n}{2} \lceil \frac{k/2}{k_c} \rceil \qquad + 36 \cdot \frac{m}{2} \frac{n}{2}) \cdot \tau_b$$

$$\blacktriangleright \quad \text{Naïve Strassen } T_m = \left(7 \cdot \frac{m}{2} \frac{k}{2} \left\lceil \frac{n/2}{n_c} \right\rceil + 7 \cdot \frac{n}{2} \frac{k}{2} + 7 \cdot 2\lambda \frac{m}{2} \frac{n}{2} \left\lceil \frac{k/2}{k_c} \right\rceil \\ + 19 \cdot \frac{m}{2} \frac{k}{2} + 19 \cdot \frac{n}{2} \frac{k}{2} + 36 \cdot \frac{m}{2} \frac{n}{2} \right) \cdot \tau_b$$

Two-level ٠

$$F_{m} = (194 \cdot \frac{m}{4} \frac{k}{4} \lceil \frac{n/4}{n_c} \rceil + 194 \cdot \frac{n}{4} \frac{k}{4} + 154 \cdot 2\lambda \frac{m}{4} \frac{n}{4} \lceil \frac{k/4}{k_c} \rceil \qquad () \cdot \tau_b$$

$$\blacktriangleright \text{ AB Strassen } T_m = (194 \cdot \frac{m}{4} \frac{k}{4} \lceil \frac{n/4}{n_c} \rceil + 194 \cdot \frac{n}{4} \frac{k}{4} + 49 \cdot 2\lambda \frac{m}{4} \frac{n}{4} \lceil \frac{k/4}{k_c} \rceil + 462 \cdot \frac{m}{4} \frac{n}{4} \rceil \cdot \tau_b$$

$$\blacktriangleright \qquad \text{Naïve Strassen } T_m = (49 \cdot \frac{m}{4} \frac{k}{4} \lceil \frac{n/4}{n_c} \rceil + 49 \cdot \frac{n}{4} \frac{k}{4} + 49 \cdot 2\lambda \frac{m}{4} \frac{n}{4} \lceil \frac{k/4}{k_c} \rceil + 293 \cdot \frac{m}{4} \frac{k}{4} + 293 \cdot \frac{n}{4} \frac{k}{4} + 462 \cdot \frac{m}{4} \frac{n}{4}) \cdot \tau_b$$

Modeled and Actual Performance on Single Core

Modeled Performance

Modeled Performance

Modeled Performance

Modeled Performance

Modeled Performance

Modeled Performance

Actual Performance

Theoretical Speedup over DGEMM

- One-level Strassen (1+14.3% speedup)
 - > 8 multiplications \rightarrow 7 multiplications;
- Two-level Strassen (1+30.6% speedup)
 - > 64 multiplications \rightarrow 49 multiplications;

- Both one-level and two-level
 - For small square matrices, ABC Strassen outperforms AB Strassen
 - For larger square matrices, this trend reverses
- Reason
 - ABC Strassen avoids storing M (M resides in the register) .
 - ABC Strassen increases the number of times for updating submatrices of C

- Both one-level and two-level
 - For small square matrices, ABC Strassen outperforms AB Strassen
 - For larger square matrices, this trend reverses
- Reason
 - ABC Strassen avoids storing M (M resides in the register) .
 - ABC Strassen increases the number of times for updating submatrices of C

• What is Rank-k update?

Importance of Rank-k update

Numer. Math. 13, 354-356 (1969)

Gaussian Elimination is not Optimal Volker Strassen*

Received December 12, 1968

1. Below we will give an algorithm which computes the coefficients of the product of two square matrices A and B of order n from the coefficients of A and B with less than $4.7 \cdot n^{\log 7}$ arithmetical operations (all logarithms in this paper are for base 2, thus $\log 7 \approx 2.8$; the usual method requires approximately $2n^3$ arithmetical operations). The algorithm induces algorithms for inverting a matrix of order n, solving a system of n linear equations in n unknowns, computing a determinant of order n etc. all requiring less than const $n^{\log 7}$ arithmetical operations.

This fact should be compared with the result of KLYUYEV and KOKOVKIN-SHCHERBAK [1] that Gaussian elimination for solving a system of linear equations is optimal if one restricts oneself to operations upon rows and columns as a whole. We also note that WINOGRAD [2] modifies the usual algorithms for matrix multiplication and inversion and for solving systems of linear equations, trading roughly half of the multiplications for additions and subtractions.

It is a pleasure to thank D. BRILLINGER for inspiring discussions about the present subject and St. Cook and B. PARLETT for encouraging me to write this paper.

2. We define algorithms $\alpha_{m,k}$ which multiply matrices of order $m2^k$, by induction on k: $\alpha_{m,0}$ is the usual algorithm for matrix multiplication (requiring m^3 multiplications and $m^2(m-1)$ additions). $\alpha_{m,k}$ already being known, define $\alpha_{m,k+1}$ as follows:

If A, B are matrices of order $m2^{k+1}$ to be multiplied, write

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \qquad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \qquad A B = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix},$$

where the A_{ik} , B_{ik} , C_{ik} are matrices of order $m2^k$. Then compute

$$\begin{split} \mathbf{I} &= (A_{11} + A_{22}) (B_{11} + B_{22}), \\ \mathbf{II} &= (A_{21} + A_{22}) B_{11}, \\ \mathbf{III} &= A_{11} (B_{12} - B_{22}), \\ \mathbf{IV} &= A_{22} (-B_{11} + B_{21}), \\ \mathbf{V} &= (A_{11} + A_{12}) B_{22}, \\ \mathbf{VI} &= (-A_{11} + A_{21}) (B_{11} + B_{12}), \\ \mathbf{VII} &= (A_{12} - A_{22}) (B_{21} + B_{22}), \end{split}$$

* The results have been found while the author was at the Department of Statistics of the University of California, Berkeley. The author wishes to thank the National Science Foundation for their support (NSF GP-7454). Blocked LU with partial pivoting (getrf)

• Importance of Rank-k update

X

Modeled Performance

Modeled Performance

Modeled Performance

Modeled Performance

Modeled Performance

Modeled Performance

Actual Performance

• Reason:

ABC Strassen avoids forming the temporary matrix M explicitly in the memory (M resides in register), especially important when m, n >> k.

Outline

- Standard Matrix-matrix multiplication
- Strassen's Algorithm Reloaded
- Theoretical Model and Analysis
- Performance Experiments
- Conclusion

Single Node Experiment

1 core

5 core

10 core

10

11 12

 $\times 10^3$

 $\times 10^3$

Many-core Experiment

Intel® Xeon Phi[™] coprocessor (KNC)

Distributed Memory Experiment

Outline

- Standard Matrix-matrix multiplication
- Strassen's Algorithm Reloaded
- Theoretical Model and Analysis
- Performance Experiments
- Conclusion

Acknowledgement

- NSF grants ACI-1148125/1340293, CCF-1218483.
- Intel Corporation through an Intel Parallel Computing Center (IPCC).
- Access to the Maverick and Stampede supercomputers administered by TACC.

We thank Field Van Zee, Chenhan Yu, Devin Matthews, and the rest of the SHPC team (<u>http://shpc.ices.utexas.edu</u>) for their supports.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

