SC17

Denver,CO connects

Matrix Multiplication Tensor Contraction Tensors as Matrices: Block-Scatter-Matrix View

Tensor: Ay, ,with N, =4, N. =2, N, = 8. 8x2x4
“d” dimension is stride-1, other dimensions have increasing strides (8, 16).

Cij+= 2k Ai kB, = B . Matrix: Aac)(a), with Nj, = N, - Ne =8, Np, = Ny =8. 8x8
Column “ac” dimension has stride of “c” (8x2=16).
Tensor contraction (TC) is an important computational kernel widely used in numerous applications. It is a Row “d” dimension has is stirde-1. (i.e. M is row-major.)
multi-dimensional generalization of matrix multiplication (GEMM). While Strassen’s algorithm for GEMM is Blocking lets us use the constant stride when possible, and a scattered algorithm otherwise.

well studied in theory and practice, extending it to accelerate TC has not been previously pursued. Thus, Matrix multiplication: A, B, and C are eventually partitioned into small, fixed-sized blocks
we be”eve th|s to be the ﬁrSt Work to demonstrate hOW one can in ractice S eed u tensor Contraction : : . | e Twontevel Naive (Actual) T lenel Naiue (Modeled) + Twortevel Naive (Actual) Tmo-leuel Natve (Modeted) s Taotevel Natve (Actuct) Twotevel Natve (Modeiad) |
P P p for packing or microkernel, such as 4x4 (picture below), 8x4, 6x8, etc.] e e e]

with Strassen’s algorithm. By adopting a Block-Scatter-Matrix format, a novel matrix-centric tensor layout, : . . B e e 8 o s
we can conceptuaﬁly view Té as CEEI\/QI’M for a general stride storage, with an implicit tensor-to matrixy Tensor Contraction: The tensor blocks can be encoded into regular small matrix blocks e e) o) S)
’ Whenever pOSS|b|e, 0 that no Overhead |S Incurred p., = Ny, , 10 core, Actual Ny, = Ny, = 16000, 10 core, Actual Np, = 1024, 10 core, Actual

transformation. This insight enables us to tailor a recent state-of-the-art implementation of Strassen’s
algorithm to a recent state-of-the-art TC, avoiding explicit transpositions (permutations) and extra
workspace, and reducing the overhead of memory movement that is incurred. Performance benefits are
demonstrated with a performance model as well as in practice on modern single core, multicore, and 0
distributed memory parallel architectures, achieving up to 1.3x speedup. The resulting implementations
can serve as a drop-in replacement for various applications with significant speedup.

32

oT'BLIS (Actual) TBLIS (Modeled) oTBLIS (Actual) TBLIS (Modeled) ’ oT'BLIS (Actual) TBLIS (Modeled)
AOne-level ABC (Actual) One-level ABC (Modeled) A One-level ABC (Actual) One-level ABC (Modeled) A One-level ABC (Actual) One-level ABC (Modeled)
| » One-level AB (Actual) —— One-level AB (Modeled) | . n One-level AB (Actual) One-level AB (Modeled) I o m One-level AB (Actual) One-level AB (Modeled) I
® One-level Naive (Actual) One-level Naive (Modeled) » One-level Naive (Actual) One-level Naive (Modeled) Al One-level Naive (Actual) One-level Naive (Modeled)
ATwo-level ABC (Actual) Two-level ABC (Modeled) ATwo-level ABC (Actual) Two-level ABC (Modeled) ATwo-level ABC (Actual) Two-level ABC (Modeled)
| » Two-level AB (Actua Two-level AB (Modeled) | ® | mTwo-level AB (Actua Two-level AB (Modeled) | n Two-level AB (Actual) Two-level AB (Modeled)

Effective GFLOPS (2- Ny, - Nj_ - Np, /time)

| [[[[

1 rscata , cscat 4 store offset for each position in rows or columns.
OFFSET 4, ., = rscata,(ac) + cscata.(qg)
rbs4 , cbsa store stride for each block or zero for irregular blocks.
The block scatter vectors help to utilize efficient SIMD vector load/store instructions for stride-one
index, or vector gather/scatter fetch instructions for stride-n index.

‘3‘»5

o‘:o s g g)
Q Alfl!'qi gﬁ sm

A" ‘31'

A‘ x A.rA. .“ |!t
qﬂ:". li"%‘l.

9 oTBLIS

A e-level ABC - A One-level ABC " o : '.. e A One-level ABC

o e-level AB . w One-level AB S 3 " L "e # One-level AB

o e-level Naive || » One-level Naive [] . » One-level Naive
o-level ABC ‘ ATwo-level ABC s : A Two-level ABC

[] o-level AB 3 n Two-level AB A‘A. " mTwo-level AB

. o-level Naive e Two-level Naive °. - e Two-level Naive

-
o T
; °f:>~:) oy W

.3 gl
ot Lty
B o

| » n
> =" @,
>

High-performance GEMM / Strassen’s Algroithm : : . i
£N-P [B Strassen’s Algorithm for Tensor Contraction - 6 7 8 9 1011 12 9 10 11 12 9 10 11 12
= (AgoT+A411) (Byot+ By 1); Np = N; 10°

= N -10° -10°
= (A19tA11)Byp; - : : : -

= Ayo(By-By,); = (Ayy+A11) (Byg+By); Coo + ; A X Performance of various implementations for synthetic data on single core and one socket. Top row: actual
:= A (Byo-By); = (A,g+A;)Byp; - - anc and modeled performance on single core; Bottom Row: actual performance on one socket. Left column:

(AgotAg1) By := Aoy (By—By1); - - - T * N, ~N, ~Np, ; Middle column: Nj,,~N,,~16000, Np, varies; Right row: Np,~1024, N, ~N,, vary.
5= (A19=Ao0) (Boot By1); — = A,,(Byo-By); ; ; E "

6 1= (Ao1=A1) (Byot+Byy); 1= (Ago+Ap) B : ; | 13/ /17.- e

Effective GFLOPS (2- Ny, - N;,_ - Np, /time)

\ | | \ | | | |
B BLs §1-aBC [1-AB () 1-Naive § 2-aBC [} 2-AB § 2-Naive § TTT B1BLs B 1-aBC [1-AB [1-Naive § 2-ABC) 2-AB § 2-Naive § TTT

o
Do

Coo += My + Mz - M, + Mg = (A19=A90) (Boo+Byy); Cpy += Mg 0 12«_"15_ 20 24,..~-”
Cop += My + M, = (Ag1=A11) (Bt By1); Coo += Mg; RS
Cio += M, + M;

DN
o

General Operation: M := (X+3Y)(V+eW); C+=y,M; D+=v,M; v,,v,,0,¢ €{-1, 0, 1}.

(\)
-

(a) Tensor contraction Co b.c+= Ag.c.a - Bap With N, =4, N, = N; = 8, and N. = 2. The relative location of
each data element in memory is given assuming a generalized column-major layout.

C+= AB M:=(X+Y)(V+W); C+= M, D+= M,
K n
n

_—

p—d
Ul

Y
C A —m|| X %
+= X += X
| k| J abc_acd‘dbabc-adv bd ab-¢ Cb ped- aebff .- caf & fbed aebf” df ¢ abc,acd—dbabc,adc- bd ab-a%" cb Ded- aebff deafdfbed aebf” df e

cscat - cscatg g

che. cscaty 0 cbs,, Performance for representative user cases of benchmark from [4]. TC is identified by the index string, with
5 loop around micro-kernel 5" loop around micro-kernel rscat, rbs; i , [scaty rhsg the tensor index bundle of each tensor in the order C-A-B ,e.9. Capca+= AaebrBarce is denoted as

rscat, rbs,
" 0 , \
— | : y a ; abcd-aebf-dfce. Left: performance on single core. Right: performance on one socket.
’ 5 16 ’ ' N1, (Np - Nj) = Np, (Ne - Ni) = Ny, (Ng - Ni) ~ 16000 - P
! ' on P X P MPI mesh
1 MPI process per socket

Effective GFLOPS (2 - N1, - Ny - Np_/time)

A Y,

48

4t loop around micro-kernel

8
kC { l: Yr n 24

40

Te'O

)

— 56

ke —
ke

Te;K—l

3rd |oop around micro-kernel 3" Joop around micro-kernel

| " _ _ (b) Block scatter matrix view of (a), where Aq,c,qa, Bap, and Ca b, are mapped to matrices Ai,p, Bp,; ,and Ci ; :
e e) rscatt and cscat7 denote the scatter vectors; rbs and cbs+ denote the block scatter vectors. Element locations
are given by the sum of the row and column scatter vector entries.

Weak scalability performance result of the
various implementations for a 4-D tensor
contraction CCSD application on distributed
E——— | Zabijt= Womej T aeim- CTF shows the

—aA—— One-level ABC

e Onelevet as performance of the Cyclops Tensor Framework

——a—— One-level Naive

—— Twolevel ABC (linked with Intel MKL).

—a— Two-level AB

- Nj_ - Np, /time) / Socket

+=

m

Pack X, + Y— A,
>t loon around micro-kemel \ 2 loop around micro kel An example to illustrate Strassen's algorithm for tensor contraction. The red lines denotes Strassen’s

| algorithm 2 x 2 partitions mapping from block scatter matrix view (bottom) to the original tensor (top).
In this example the partitions are regular subtensors, but this is not required in general.

—e— Two-level Naive ||
— —«— - CTF

I
6X6

1st loop around micro-kernel

Effective GFLOPS (2 - Ny

Implementation Variations

i —— .
Update C; Update C;, D; += .- e . . . o

L Naive Strassen TC: A traditional implementation with temporary buffers. 1] Jianyu Huang, Tyler M. Smith, Greg H. Henry, and Robert A. van de Geijn. “Strassen’s Algorithm Reloaded.” In SC’16.

2] Jianyu Huang, Devin A. Matthews, and Robert A. van de Geijn, “Strassen’s Algorithm for Tensor Contraction.” arXiv:1704.03092 (2017).
S B 12 cocha 3] Devin A. Matthews, “High-Performance Tensor Contraction without Transposition.” Accepted in SISC.
L1 cache L1 cache

B registers B registers) ABC Strassen TC: AB Strassen TC. Add|t|ona||y integrate the update of mu|tip|e 4] Paul Springer, and Paolo Bientinesi. “Design of a high-performance gemm-like tensor-tensor multiplication.” arXiv:1607.00145 (2016).
2 : : submatrices of matrix representation of C in the micro-kernel 0] Field G. Van Zee, and Robert A. van de Geijn. “BLIS: A framework for rapidly instantiating BLAS functionality.” TOMS 41, no. 3 (2015): 14.

micro-kernel

] main memory [J main memory

=13 cache = = 03 cacne 1 AB Strassen TC: Integrate the addition of tensors into A; and B,.

WHAT STARTS HERE CHANGES THE WORLD

> THE UNIVERSITY OF TEXAS AT AUSTIN

