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Matrix multiplication is a core building block for numerous scientific

computing and, more recently, machine learning applications. Strassen’s al-

gorithm, the original Fast Matrix Multiplication (FMM) algorithm, has long

fascinated computer scientists due to its startling property of reducing the

number of computations required for multiplying n × n matrices from O(n3)

to O(n2.807). Over the last half century, this has fueled many theoretical

improvements such as other variations of Strassen-like FMM algorithms. Pre-

vious implementations of these FMM algorithms led to the “street wisdom”

that they are only practical for large, relatively square matrices, that they re-

quire considerable workspace, and that they are difficult to achieve thread-level

parallelism. The thesis of this work dispels these notions by demonstrating

significant benefits for small and non-square matrices, requiring no workspace

beyond what is already incorporated in high-performance implementations

of matrix multiplication, and achieving performance benefits on multi-core,

many-core, and distributed memory architectures.
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Chapter 1

Introduction

At the core of dense linear algebra lies matrix multiplication (gemm),

a fundamental primitive of great importance to numerous scientific disciplines

such as machine learning [125, 18], numerical linear algebra [63, 39, 2, 43],

graph analysis [66], and more. Considerable effort has been made to improve

the performance of this task over the last decades.

Strassen’s algorithm (Strassen) [115], the original Fast Matrix Mul-

tiplication (FMM)1 algorithm, has fascinated theoreticians and practitioners

alike since it was first published in 1969. That paper demonstrated that mul-

tiplication of n × n matrices can be achieved in less than the O(n3) floating

point operations required by a conventional matrix multiplication. It has led to

many variants (other Strassen-like FMM algorithms) that improve upon this

result [129, 12, 100, 104] as well as practical implementations [32, 59, 26, 9].

The method can yield a shorter execution time than the best conventional

algorithm with a modest degradation in numerical stability [50, 28, 6] by only

incorporating a few levels of the recursion that underlies the method.

1Fast matrix multiplication (FMM) algorithms are those matrix multiplication algo-
rithms which perform asympototically fewer arithmetic operations than the classical algo-
rithm. Strassen can be found in Section 3.1, and another example of FMM algorithms is
given in Appendix C.
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1.1 Motivation

From 30,000 feet, Strassen and similar Strassen-like FMM algorithms

can be described as shifting computation with submatrices from multiplica-

tions to additions, reducing the O(n3) term at the expense of adding O(n2)

complexity. For current architectures, of greater consequence is the additional

memory movements that are incurred when the algorithm is implemented in

terms of a conventional gemm provided by a high-performance implementa-

tion through the Basic Linear Algebra Subprograms (BLAS) [30] interface. A

secondary concern has been the extra workspace that is required. This simul-

taneously limits the size of problem that can be computed and makes it so

an implementation is not plug-compatible with the standard calling sequence

supported by the BLAS. These constraints expose the “street wisdom” for

implementing Strassen and similar Strassen-like FMM algorithms:

• Strassen and similar Strasen-like FMM algorithms are only practical for

very large matrices.

• For Strassen and similar Strassen-like FMM algorithms to be effective,

the matrices being multiplied should be relatively square.

• Strassen and other Strassen-like FMM algorithms inherently require sub-

stantial workspace.

• A Strassen or other similar Strassen-like FMM algorithm interface must

allow the caller to pass in workspace or allocate substantial workspace in-

ternally.
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• It is hard to demonstrate speedup on multi-core architectures.

These limitations motivate us to work towards the theory and practice

of the fast matrix multiplication algorithms. The goal of this dissertation is

to explore the practical implementation of Strassen and Strassen-like FMM

algorithms on various architectures to overcome these limitations.

1.2 Solution

An important recent advance in the high-performance implementa-

tion of gemm is the BLAS-like Library Instantiation Software (BLIS frame-

work) [124], a careful refactoring of the best-known approach to implementing

conventional gemm introduced by Goto [38]. A similar effort made for Nvidia

GPUs is CUDA Templates for Linear Algebra Subroutines (CUTLASS) [67].

Of importance to the solution to the basic problem above are the building

blocks that BLIS and CUTLASS expose, minor modifications of which sup-

port a new approach to implementating Strassen and similar Strassen-like

FMM algorithms. This approach changes data movement between memory

layers and can thus mitigate the negative impact of the additional lower-order

terms incurred by Strassen and other Strassen-like FMM algorithms. These

building blocks have similarly been exploited to improve upon the performance

of, for example, the computation of the K-Nearest Neighbor [131, 97] and Ten-

sor Contraction [85, 112] problem. The result is a family of Strassen and

other Strassen-like FMM implementations, members of which attain superior

performance depending on the sizes of the matrices.
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The resulting family improves upon prior implementations of Strassen

and Strassen-like FMM algorithms in a number of surprising ways:

• It can outperform classical gemm even for small square matrices.

• It can achieve high performance for rank-k updates (gemm with a small

“inner matrix size”), a case of gemm frequently encountered in the imple-

mentation of libraries like LAPACK [2].

• It requires no additional workspace beyond the small buffers that are already

incorporated in BLIS and CUTLASS.

• It can incorporate directly the multi-threading in traditional gemm imple-

mentations.

• It can be plug-compatible with the standard gemm interface supported by

the BLAS and cuBLAS.

• It can be incorporated into practical distributed memory implementations

of gemm.

Most of these advances run counter to “street wisdom.”

1.3 Contributions

This disseration makes the following contributions:
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• It dispels the conventional notions regarding implementing Strassen

and similar Strassen-like FMM algorithms, outperforming the conven-

tional matrix multiplication for small and non-square matrices and requiring

no additional workspace other than what is already embeded in the high-

performance implementations of gemm.

• It demonstrates performance benefits of Strassen on single core,

multi-core, many-core, and distributed parallel CPU architectures.

Thread-level parallelism without the extra overhead of task parallelism is

attained by adopting the same loop structure and parallel scheme as the

high-performance gemm implementation.

• It facilitates a code generator to automatically implement families

of Strassen-like FMM algorithms, which expresses the composition of

multi-level FMM algorithms as Kronecker products.

• It builds an accurate performance model, which can also be generated

by the code generator and used for guiding the choice of a FMM implementa-

tion as a function of problem size and matrix shape, facilitating the creation

of “poly-algorithms” [77] that select the best algorithm without exhaustive

empirical search.

• It provides the first efficient implementation of Strassen for tensor

contraction, the multi-dimensional generalization of matrix multiplication,

without the explicit transposition of data that inherently incur significant

memory movement and workspace overhead.
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• It achieves more parallelism and requires less memory with a prac-

tical Strassen implementation on Nvidia GPUs, which can be viewed

as massively-parallel, throughput-oriented computing engines. The special-

ized kernel is developed to utilize the memory hierarchy and thread hier-

archy, to reduce the additional workspace requirement through reusing the

shared memory and the register files, and to exploit the inter-kernel paral-

lelism as well as the intra-kernel parallelism.

1.4 Outline of the dissertation

The rest of this dissertation is organized as follows:

• Chapter 2 discusses the literature related to the high-performance implemen-

tations of matrix multiplication algorithms and the theoretical and practical

breakthroughs of Strassen and similar Strassen-like fast matrix multipli-

cation algorithms.

• Chapter 3 presents a novel practical implementation of Strassen, which

demonstrates significant speedups for small problem sizes and non-square

matrix shapes, avoids additional workspace requirement other than what is

already in gemm, and achieves better performance on various CPU archi-

tectures.

• Chapter 4 further develops a code generator framework to automatically

implement a large family of fast matrix multiplication algorithms suitable

for multiplications of arbitrary matrix sizes and shapes. Performance models
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are incorporated into the code generator to guide the choice of a FMM

implementation as a function of problems sizes and matrix shapes.

• Chapter 5 extends the novel insights from Chapter 3 into tensor contraction,

a higher dimensional generalization of matrix multiplication.

• Chapter 6 describes how to apply Strassen on GPUs with less memory

and more parallelism.

• Chapter 7 concludes this dissertation and proposes ideas for future research.

• Appendices A and B provide tables of acronyms and symbols used through-

out this dissertation.

• Appendix C shows an example of Strassen-like FMM algorithms other than

Strassen.

• Appendix D derives that the composition of multi-level FMM algorithms

can be expressed as Kronecker products.

• Appendix E addresses the numerical stability for Strassen and similar

Strassen-like FMM algorithms.
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Chapter 2

Related Work

In this chapter, we will look at related work, including a brief de-

scription of the state-of-the-art implementations and algorithms for matrix

multiplication, followed by a brief literature review of Strassen and similar

Strassen-like FMM algorithms over the last half century.

2.1 High-performance matrix multiplication algorithm

We start by discussing the conventional matrix multiplication (gemm),

how it is supported as a library routine by the Basic Linear Algebra Subpro-

grams (BLAS) [30], how modern implementations block for caches, and how

that implementation supports multi-threaded parallelization.

2.1.1 Computing C = αAB + βC

Consider C = αAB + βC, where C, A, and B are m × n, m × k, and

k × n matrices, respectively, and α and β are scalars. If the (i, j) entry of

C, A, and B are respectively denoted by ci,j, ai,j, and bi,j, then computing

C = αAB + βC is achieved by

ci,j = α
k−1∑
p=0

ai,pbp,j + βci,j,
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which requires 2mnk floating point operations (flops).

2.1.2 Computing with submatrices

Important to our discussion is that we partition the matrices and stage

the matrix-multiplication as computations with submatrices. For example, let

us assume that m, n, and k are all even and partition

C =

(
C00 C01

C10 C11

)
, A =

(
A00 A01

A10 A11

)
, B =

(
B00 B01

B10 B11

)
,

where Cij is m
2
× n

2
, Aij is m

2
× k

2
, and Bij is k

2
× n

2
. Then

C00 = (A00B00 + A01B10) + C00 C01 = (A00B01 + A01B11) + C01

C10 = (A10B00 + A11B10) + C10 C11 = (A10B01 + A11B11) + C11

computes C = AB + C via eight multiplications and eight additions with

submatrices, still requiring approximately 2mnk flops.

2.1.3 Basic Linear Algebra Subprograms (BLAS)

The Basic Linear Algebra Subprograms (BLAS) [73, 31, 30] specifies an

interface for a set of dense linear algebra (DLA) operations on which higher

level linear algebra libraries, such at LAPACK [2] and libflame [121], are

built. The BLAS operations are divided into three sets: the level-1 BLAS

(vector-vector operations), the level-2 BLAS (matrix-vector operations), and

the level-3 BLAS (matrix-matrix operations). Examples of BLAS libraries on

CPUs include IBM ESSL [60], Intel MKL [61], ATLAS [3], GotoBLAS [40],

OpenBLAS [90], and BLIS [14]. Other implementations of BLAS operations
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with similar interfaces on GPUs include clBLAS [20], Nvidia cuBLAS [87], and

AMD rocBLAS [1].

2.1.4 Level-3 BLAS matrix-matrix multiplication

(General) matrix-matrix multiplication (gemm) is supported in the

level-3 BLAS [30] interface as

DGEMM( transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc )

SGEMM( transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc )

where “DGEMM” and “SGEMM” are for double precision and single precision,

respectively. These calls support

C = αAB + βC, C = αATB + βC,
C = αABT + βC, and C = αATBT + βC

depending on the choices of transa and transb (indicating whether the ma-

trices A and B should be transposed). The parameters C, A, and B are the

arrays used to store the matrices C, A, and B. The parameters m, n, k, alpha,

and beta are coresponding to m, n, k, α, and β in Section 2.1.1. The pa-

rameters lda, ldb, and ldc specify the leading dimension of A, B, and C,

that is, the the number of elements between successive columns (for column

major storage) in memory. In this dissertation, we focus on the special case

α = 1 and β = 1 for brevity. By internally allowing both a row stride and

a column stride for A, B, and C (as the BLIS framework does), transposition

can be easily supported by swapping these strides. It suffices then to consider

C = AB + C.
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Loop 5 for jc =0 : n−1 steps of nc
Jc =jc : jc+nc−1

Loop 4 for pc =0 : k−1 steps of kc
Pc =pc : pc+kc−1

B(Pc,Jc) → B̃ // Pack into B̃p

Loop 3 for ic =0 : m−1 steps of mc

Ic = ic : ic+mc−1

A(Ic,Pc) → Ã // Pack into Ãi

// macro-kernel

Loop 2 for jr =0 : nc−1 steps of nr
Jr =jr : jr+nr−1

Loop 1 for ir =0 : mc−1 steps of mr

Ir = ir : ir+mr−1
// micro-kernel

Loop 0 for pr =0 : kc−1

C(Ir,Jr)+= Ã(Ir, pr) B̃(pr,Jr)
endfor

endfor
endfor

endfor
endfor

endfor

Figure 2.1: Left: illustration of the BLIS implementation of the GotoBLAS algorithm. All computation
is cast in terms of a highly optimized micro-kernel. Right: the same algorithm, but expressed as loops.
The left figure originally appeared in [123], and the right figure originally appeared in [109].
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2.1.5 The GotoBLAS algorithm

A key insight underlying modern high-performance implementations of

gemm is to organize the computations by partitioning the operands into blocks

for temporal locality, and to pack (copy) such blocks into contiguous buffers

that fit into various levels of memory for spatial locality. Figure 2.1 illustrates

the GotoBLAS algorithm as implemented in BLIS.

• Cache blocking parameters {mC , nC , kC} determine the submatrix sizes

of Bp (kC × nC) and Ai (mC × kC), such that they fit in various caches.

During the computation, row panels Bp are contiguously packed into

buffer B̃p to fit in the L3 cache.1 Blocks Ai are similarly packed into

buffer Ãi to fit in the L2 cache.

• Register block sizes {mR, nR} relate to submatrices in registers that con-

tribute to C. In the micro-kernel (the inner most loop), a small mR×nR
micro-tile of C is updated by a pair of mR×kC and kC×nR micro panels

of Ãi and B̃p.

The above parameters can be analytically chosen [80].

2.1.6 Hierarchical memory architectures

The modern computer architecture with a hierarchical memory archi-

tectures has memory that is laid out as a pyramid, with fast and small memo-

1If an architecture does not have an L3 cache, this panel is still packed to make the data
contiguous and to reduce the number of TLB entries used.
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ries close to the processor, and slow and large memories far away from it [48].

Gunnels et al. [44] describes a family of algorithms for matrix multipli-

cation on hierarchical memory architectures. The theoretical insight showed

that, depending on the matrix shape of matrix multiplication that is executed

at the current level of cache, there are two locally-optimal strategies for the

matrix shape of matrix multiplication that must happen at the next highest

level of cache. That motivates a tree of locally-optimal decisions, each path

from root to leaf of which represents a member of the family of algorithms.

Smith [106] further derived a new family of algorithms for optimiz-

ing the I/O cost of matrix multiplication at multiple levels of the memory

hierarchy simultaneously. He showed that one can compose two loops per

level of cache in order to encounter an optimal subproblem, whose shapes

arise from algorithms that attain the theoretical I/O lower bounds for matrix

multiplications for a single level of cache, at each layer of the memory hierar-

chy. With the expansion of the family of algorithms to allow more flexibility

and to include GotoBLAS as a part of this family, the Multilevel Opti-

mized Matrix-matrix Multiplication Sandbox (MOMMS) [105] was created to

demonstrate the performance improvements of practical algorithms from the

family over the state-of-the-art GotoBLAS in terms of I/O cost. Impor-

tantly to that work, it showed some members of the family of algorithms can

outperform the state-of-the-art when the bandwidth to main memory is low.

Future computer architectures are expected to be bandwidth bound, while the

conventional implementations of Strassen and similar Strassen-like FMM al-
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gorithms reduce the total number of computations at the cost of consuming

more bandwidth. That work may be the answer to how to develop Strassen

and similar Strassen-like FMM algorithms based on matrix multiplication in

a low bandwidth scenario. Details of this go beyond this dissertation.

2.1.7 Multi-threaded implementation

BLIS exposes all the illustrated loops in Figure 2.1, requiring only the

micro-kernel to be optimized for a given architecture. In contrast, in the Go-

toBLAS implementation the micro-kernel and the first two loops around it

form an inner-kernel (known as a “macro-kernel” in BLIS terminology) that

is implemented as a unit. As a result, the BLIS implementation exposes five

loops (two more than the GotoBLAS implementation) that can be paral-

lelized, as discussed in [108].

2.1.8 Other approaches

In the early stages, high-performance gemm typically required hand-

written assembly code optimized for a specific processor. To avoid this tedious

task, autotuning is proposed where the best parameters are determined by

measuring performance empirically when thosed parameters are tuned. The

Portable High Performance ANSI C (PHiPAC) [11] project provided guidelines

for writing the high-performance gemm in C and introduced the code genera-

tor to autogenerate and find the best parameters for a given system. Further,

the Automatically Tuned Linear Algebra Software (ATLAS) [126] were built
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on these insights and made autogeneration and autotuning of BLAS libraries

mainstream. The main contribution of ATLAS was the idea of casting matrix

multiplication in terms of a basic unit of computation, which was originally

called “on-chip multiply” and is known as “inner-kernel” or “macro-kernel”

now. However, as pointed out by Smith [106], the I/O cost of the algorithms

used by ATLAS is 50% higher than the tight lower bound in [107]. On the other

hand, model-driven optimization can be more effective to select the best pa-

rameters with the best performance for a given architecture. Yotov et al. [130]

showed that one can identify the near-optimal block sizes for gemm with the

analytical model, and thus empirical search is unnecessary. Low [80] further

applied the analytical model approach to the more modern GotoBLAS.

K̊agström [63] showed that the level-3 BLAS operations can be imple-

mented mostly based on gemm. This is sometimes referred to as “poorman’s

BLAS” in the sense that it is only necessary to optimize gemm, then all level-3

BLAS can be built in terms of this “for free”, which brings both modularity

and high performance.

2.2 Literature review for FMM algorithms

There is an extensive literature on the theory and practice for Strassen

and FMM algorithms. Here we only mention the most influential ones.
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2.2.1 Theory

A history for complexity improvements

Until the late 1960’s, it was widely accepted that the number of oper-

ations for the multiplication of n× n matrices was essentially O(n3). In 1969,

Strassen [115] demonstrated that it suffices to perform matrix multiplication

with only O(n2.8074) arithmetic operations, which opened a new era of reseach

for fast matrix multiplication algorithms. Figure 2.2 shows the chronological

improvement of the exponents ω for the FMM arithmetic complexity O(nω)

over the last decades.

In 1971, Winograd [129] proved that the minimum required number of

multiplications for 2 × 2 and 2 × 2 submatrix multiplication is seven. This

paper further led to a more efficient Winograd variant of Strassen’s algorithm,

in which the recursive step has 15 instead of 18 submatrix additions. In 1978,

Pan [91] constructed an exact algorithm with O(n2.7951) arithmetic complexity,

by trilinear aggregation and a base case of multiplying 70 × 70 submatrix

multiplications in 143640 operations. In 1979, Bini et al. [12] presented a

method for multiplying 3×2 and 2×2 submatrices with O(n2.7799) complexity,

by introducing the notion of arbitrary precision approximate (APA) algorithms

and border rank. In 1981, Schönhage [100] further generalized that notion of

APA and border rank, proved the asymptotic sum inequality, and obtained

O(n2.522) complexity based on 3× 3 and 3× 3 submatrix multiplications. The

following year, Coppersmith and Winograd [23] achieved O(n2.4966) complexity

with similar techniques, the first result beating O(n2.5). In 1986, Strassen [116]
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multiplication, O(nω). Note that we only cover some important papers.
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introduced a new method called the laser method technique with O(n2.4785)

complexity, which was adopted by Coppersmith and Winograd [22] one year

later to push to the famous bound O(n2.376). This new bound had been the

state of the art for the following twenty years, until finally being advanced by

Stothers [114] with the new upper bound O(n2.374), in 2010. Two years later,

Williams [128] futher improved the bound to O(n2.3728642). More recently, in

2014, François [74] achieved the current world champion bound O(n2.3728639)

by polishing up Williams’ methods.

This is just a small sample of the important breakthroughs in this area.

Numerical stability

Bini and Lotti [13] proves the “normwise stability” and provides the

first general error bound for Strassen and similar Strassen-like FMM algo-

rithms. Since then, a number of papers [50, 28, 25] have been published to

analyze and improve the numerical properties of various FMM algorithms.

Even more recently, Ballard et al. [6] explored ways to improve the accuracy

both thoeretically and empirically. These papers show FMM algorithms are

reasonably numerically stable as long as only a few levels of recursions are

adopted. More details about the numerical stability of Strassen and similar

Strassen-like FMM algorithms can be found in Appendix E.
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Feasible algorithms

A number of theoretical research papers mentioned above [12, 100, 23,

116, 23, 114, 128, 74] are of purely theoretical interest and not feasible in

practice. On the one hand, these papers only prove the existence of fast APA

algorithms with better asymptotic complexity, which are valid only for inputs

beyond any practical size [100]. On the other hand, those APA algorithms

exhibit serious numerical instability problems [9].

A recent review [33] pointed out that the current complexity record

for “moderate” problem size with n < 1000000 is O(n2.7734), achieved by Pan

with the 44×44 submatrix multiplications in [92]. Remarkably, Smirnov [104]

proposed systematic approaches to discover feasible algorithms and presented

several new algorithms, including an algorithm with complexity O(n2.7743).

Most recently, Karstadt and Schwartz [65] obtained a faster FMM algorithm

with the same base case size and asymptotic complexity as Winograd [129],

but with the coefficient reduced from 6 to 5.

2.2.2 Practice

Layering FMM algorithms upon standard gemm calls

There is a rich history of work that combines a few levels of Strassen

and related variants with calls to highly optimized implementations of the

gemm that are part of the BLAS: IBM’s ESSL library [60] long included such

routines as an option and portable libraries were reported in Huss-Lederman

et al. [59] and Douglas et al. [32].
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Lower level implementation

A very thorough treatment was given by D’Alberto et al. [27], which

not only supported the layering upon gemm but also studied how to optimize

below the BLAS interface. However, in these studies, extra temporary matrices

are still required.

Sequential

Bailey [5], Douglas et al. [32], and Huss-Lederman [59] provided sequen-

tial implementations of Strassen’s algorithm. Kaporin [64] implemented the

algorithms presented in [91, 71], showing that the running time for one-level

of such algorithms (e.g., 70 × 70 submatrix multiplications) was comparable

with Strassen’s algorithm on a sequential machine.

Parallelization for shared memory

Scheduling tasks (multiplications with submatrices) to multiprocessors

and multi-threaded architectures has been widely studied [27, 9, 26, 70]. A

fundamental problem is that Strassen creates 7l such tasks, where l equals

the number of levels of Strassen. This makes it difficult to load balance [9].

Other Strassen-like FMM algorithms suffer similar problems.

Parallelization for distributed memory

The distributed memory implementation of Strassen by Luo and

Drake [81] based on Cannon’s algorithm [17] inspired the more practical im-
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plementation by Grayson and van de Geijn [42] that builds upon the SUMMA

algorithm for distributed memory matrix-matrix multiplication by van de

Geijn and Watts [120]. Ballard [7] and Lipshitz [79] demonstrated a parallel

Strassen implementation for distributed memory that minimizes communi-

cation cost.

Parallelization for GPUs

Strassen and Winograd [129] variants are efficiently implemented on a

single GPU in [76, 72]. Lai et al. [72] supported arbitrary sized matrices by use

of dynamic peeling [117] and exploited multi-kernel concurrency to leverage the

inter-block and intra-block parallelism in the lowest level of recursion, based

on the cuBLAS library [87].

2.3 Summary

We have reviewed the related work on the high-performance imple-

mentations of the conventional matrix multiplication and the theoretical and

practical breakthroughs of Strassen and similar Strassen-like FMM algo-

rithms over the last half century. More details for the work directly related to

this dissertation will be given in the later chapters.
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Chapter 3

A Practical Strassen’s Algorithm

Let us now focus on the practical implementation of Strassen, the

original Fast Matrix Multiplication algorithm. The orthodox implementation

of Strassen entails “street wisdom” that it is only practical for large and

relatively square matrices, that it needs substantial workspace, that it suf-

fers the overhead of extra memory movement that is incurred, and that it

is laborious to achieve thread-level parallelism. In this chapter, we counter

conventional wisdom, demostrating significant performance improvements for

small and non-square matrices, requiring no workspace beyond what is already

incorporated in the high-performance implementation of gemm, and achiev-

ing speedup on single core, multi-core, many-core, and distributed memory

architectures.

This chapter is based on the conference paper [56] with minor modifications: “Jianyu
Huang, Tyler M. Smith, Greg M. Henry, and Robert A. van de Geijn. Strassen’s algorithm
reloaded. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 16), pages 59:1-59:12. IEEE Press, 2016.” I am the
main contributor in charge of problem formulation, algorithm development, performance
analysis, and experimental validations.
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M0 =(A00 + A11)(B00 +B11); C00+= M0;C11+= M0;
M1 =(A10 + A11)B00; C10+= M1;C11−= M1;
M2 =A00(B01 −B11); C01+= M2;C11+= M2;
M3 =A11(B10 −B00); C00+= M3;C10+= M3;
M4 =(A00 + A01)B11; C01+= M4;C00−= M4;
M5 =(A10 − A00)(B00 +B01); C11+= M5;
M6 =(A01 − A11)(B10 +B11); C00+= M6;

Figure 3.1: All operations for one-level Strassen. Note that each row is a
special case of general operation (3.2).

3.1 Strassen’s algorithm reloaded

In this section, we present the basic idea and practical considerations of

Strassen, decomposing it into a combination of general operations that can

be adapted to the high-performance implementation of a traditional gemm.

3.1.1 The basic idea

If one partitions the three operands into quadrants,

X =

(
X00 X01

X10 X11

)
for X ∈ {A,B,C} (3.1)

then it can be verified that the operations in Figure 3.1 also compute C = AB+

C, requiring only seven multiplications with submatrices. The computational

cost is, approximately, reduced from 2mnk flops to (7/8)2mnk flops, at the

expense of a lower-order number of extra additions. Figure 3.1 describes what

we will call one-level Strassen.
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3.1.2 Classic Strassen’s algorithm

Each of the matrix multiplications that computes an intermediate result

Mk can itself be computed with another level of Strassen’s algorithm. This

can then be repeated recursively.

If originally m = n = k = 2d, where d is an integer, then the cost

becomes

(7/8)d 2n3 = (7/8)log2(n) 2n3 = nlog2(7/8)2n3 = 2n2.807 flops.

In this discussion, we ignored the increase in the total number of extra addi-

tions, which contributes a lower-order term.

3.1.3 Practical considerations

A high-performance implementation of a traditional matrix-matrix mul-

tiplication requires careful attention to details related to data movements be-

tween memory layers, scheduling of operations, and implementations at a very

low level (often in assembly code). Practical implementations recursively per-

form a few levels of Strassen until the matrices become small enough so that

a traditional high-performance gemm is faster. At that point, the recursion

stops and a high-performance gemm is used for the subproblems. In prior

implementations, the crossover point is usually as large as 2000 for double

precision square matrices on a single core of an x86 CPU [26, 9]. We will see

that, for the same architecture, one of our implementations has a crossover

point as small as 500 (Figure 3.8).
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In an ordinary matrix-matrix multiplication, three matrices must be

stored, for a total of 3n2 floating point numbers (assuming all matrices are

n × n). The most naive implementation of one-level Strassen requires an

additional seven submatrices of size n
2
× n

2
(for M0 through M6) and ten ma-

trices of size n
2
× n

2
for A00 + A11, B00 + B11, etc. A careful ordering of the

computation can reduce this to two matrices [15]. We show that the compu-

tation can be organized so that no temporary storage beyond that required

for a high-performance traditional gemm is needed. In addition, it is easy to

parallelize for multi-core and many-core architectures with our approach, since

we can adopt the same parallel scheme advocated by BLIS.

The general case where one or more dimensions are not a convenient

multiple of a power of two leads to the need to either pad matrices or to treat

a remaining “fringe” carefully [59]. Traditionally, it is necessary to pad m, n,

and k to be even. In our approach this can be handled internally by padding

Ãi and B̃p, and by using tiny (mR×nR) buffers for C along the fringes (much

like the BLIS framework does, see Section 2.1.5).

3.1.4 One-level Strassen reloaded

The operations summarized in Figure 3.1 are all special cases of

M = (X + δY )(V + εW ); D+= γ0M ; E+= γ1M ; (3.2)

for appropriately chosen γ0, γ1, δ, ε ∈ {−1, 0, 1}. Here, X and Y are subma-

trices of A, V and W are submatrices of B, and D and E are submatrices of

C.
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~ 

2nd	loop	around	micro-kernel	

Ci mR 

kC 

Pack Ai→ Ai 
~ 

Ai 
~ 

3rd	loop	around	micro-kernel	

+=	
mC 

Ci Ai mC 

L2	cache	

Pack Bp  → Bp 
~ 

Bp 
~ 

4th	loop	around	micro-kernel	

+=	
kC Ap Bp Cj 

kC 

L3	cache	

+=	
nC nC 

A B Cj 

nC nC 

main	memory	

5th	loop	around	micro-kernel	

Loop 5 for jc =0 : n−1 steps of nc
Jc =jc : jc+nc−1

Loop 4 for pc =0 : k−1 steps of kc
Pc =pc : pc+kc−1

V (Pc,Jc) + εW (Pc,Jc) → B̃p // Pack into B̃p

Loop 3 for ic =0 : m−1 steps of mc

Ic = ic : ic+mc−1

X(Ic,Pc) + δY (Ic,Pc) → Ãi // Pack into Ãi

// macro-kernel

Loop 2 for jr =0 : nc−1 steps of nr
Jr =jr : jr+nr−1

Loop 1 for ir =0 : mc−1 steps of mr

Ir = ir : ir+mr−1
// micro-kernel

Loop 0 for pr =0 : pc−1 steps of 1

Mr(Ir,Jr) += Ãi(Ir, pr) B̃p(pr,Jr)
endfor
D(Ir + ic,Jr + jc) += γ0Mr(Ir,Jr)
E(Ir + ic,Jr + jc) += γ1Mr(Ir,Jr)

endfor
endfor

endfor
endfor

endfor

Figure 3.2: Left: modification of Figure 2.1 that implements the representative computation M = (X +
Y )(V +W );D+= M ;E+= M of general operation (3.2). X, Y are submatrices of A; V , W are submatrices

of B; D, E are submatrices of C; M is the intermediate matrix product. Note that the packing buffers Ãi
and B̃p stay in cache. Right: the same algorithm, but expressed as loops (γ0 = γ1 = δ = ε = 1).
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Figure 3.3: A side-by-side comparison of the BLIS implementation of the GotoBLASalgorithm and our
modifications for implementing the representive computation M = (X + Y )(V + W );D+= M ;E+= M .
Left: Figure 2.1; Right: Figure 3.2.
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Let us focus on how to modify the algorithm illustrated in Figure 2.1

in order to accommodate the representative computation

M = (X + Y )(V +W );D+= M ;E+= M.

As illustrated in Figure 3.2 and Figure 3.3, the key insight is that the additions

of matrices V +W can be incorporated in the packing into buffer B̃p and the

additions of matrices X + Y in the packing into buffer Ãi. Also, when a small

block of (X + Y )(V + W ) is accumulated in registers it can be added to the

appropriate parts of both D and E, multiplied by γ0 and γ1, as needed, inside

a modified micro-kernel. This avoids multiple passes over the various matrices,

which would otherwise add a considerable overhead from memory movements.

3.1.5 Two-level Strassen reloaded

Let

C =


C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3

 , A =


A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

 ,

and B =


B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

 ,

where Ci,j is m
4
× n

4
, Ai,p is m

4
× k

4
, and Bp,j is k

4
× n

4
. Then it can be verified

that the computations in Figure 3.4 compute C = AB + C. The operations

found there can be cast as special cases of

M = (X0 + δ1X1 + δ2X2 + δ3X3)× (V0 + ε1V1 + ε2V2 + ε3V3);
C0+= γ0M ;C1+= γ1M ;C2+= γ2M ;C3+= γ3M
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M0 = (A0,0+A2,2+A1,1+A3,3)(B0,0 + B2,2+B1,1+B3,3); C0,0+= M0; C1,1+= M0; C2,2+= M0; C3,3+= M0;
M1 = (A1,0+A3,2+A1,1+A3,3)(B0,0 + B2,2); C1,0+= M1; C1,1−= M1; C3,2+= M1; C3,3−= M1;
M2 = (A0,0+A2,2)(B0,1+B2,3+B1,1 + B3,3); C0,1+= M2; C1,1+= M2; C2,3+= M2; C3,3+= M2;
M3 = (A1,1+A3,3)(B1,0+B3,2+B0,0 + B2,2); C0,0+= M3; C1,0+= M3; C2,2+= M3; C3,2+= M3;
M4 = (A0,0+A2,2+A0,1+A2,3)(B1,1 + B3,3); C0,0−= M4; C0,1+= M4; C2,2−= M4; C2,3+= M4;
M5 = (A1,0+A3,2+A0,0+A2,2)(B0,0 + B2,2+B0,1+B2,3); C1,1+= M5; C3,3+= M5;
M6 = (A0,1+A2,3+A1,1+A3,3)(B1,0 + B3,2+B1,1+B3,3); C0,0+= M6; C2,2+= M6;
M7 = (A2,0+A2,2+A3,1+A3,3)(B0,0 + B1,1); C2,0+= M7; C3,1+= M7; C2,2−= M7; C3,3−= M7;
M8 = (A3,0+A3,2+A3,1+A3,3)(B0,0); C3,0+= M8; C3,1−= M8; C3,2−= M8; C3,3+= M8;
M9 = (A2,0+A2,2)(B0,1+B1,1); C2,1+= M9; C3,1+= M9; C2,3−= M9; C3,3−= M9;
M10 = (A3,1+A3,3)(B1,0+B0,0); C2,0+= M10;C3,0+= M10;C2,2−= M10;C3,2−= M10;
M11 = (A2,0+A2,2+A2,1+A2,3)(B1,1); C2,0−= M11;C2,1+= M11;C2,2+= M11;C2,3−= M11;
M12 = (A3,0+A3,2+A2,0+A2,2)(B0,0 + B0,1); C3,1+= M12;C3,3−= M12;
M13 = (A2,1+A2,3+A3,1+A3,3)(B1,0 + B1,1); C2,0+= M13;C2,2−= M13;
M14 = (A0,0+A1,1)(B0,2+B2,2+B1,3 + B3,3); C0,2+= M14;C1,3+= M14;C2,2+= M14;C3,3+= M14;
M15 = (A1,0+A1,1)(B0,2+B2,2); C1,2+= M15;C1,3−= M15;C3,2+= M15;C3,3−= M15;
M16 = (A0,0)(B0,3+B2,3+B1,3+B3,3); C0,3+= M16;C1,3+= M16;C2,3+= M16;C3,3+= M16;
M17 = (A1,1)(B1,2+B3,2+B0,2+B2,2); C0,2+= M17;C1,2+= M17;C2,2+= M17;C3,2+= M17;
M18 = (A0,0+A0,1)(B1,3+B3,3); C0,2−= M18;C0,3+= M18;C2,2−= M18;C2,3+= M18;
M19 = (A1,0+A0,0)(B0,2+B2,2+B0,3 + B2,3); C1,3+= M19;C3,3+= M19;
M20 = (A0,1+A1,1)(B1,2+B3,2+B1,3 + B3,3); C0,2+= M20;C2,2+= M20;
M21 = (A2,2+A3,3)(B2,0+B0,0+B3,1 + B1,1); C0,0+= M21;C1,1+= M21;C2,0+= M21;C3,1+= M21;
M22 = (A3,2+A3,3)(B2,0+B0,0); C1,0+= M22;C1,1−= M22;C3,0+= M22;C3,1−= M22;
M23 = (A2,2)(B2,1+B0,1+B3,1+B1,1); C0,1+= M23;C1,1+= M23;C2,1+= M23;C3,1+= M23;
M24 = (A3,3)(B3,0+B1,0+B2,0+B0,0); C0,0+= M24;C1,0+= M24;C2,0+= M24;C3,0+= M24;
M25 = (A2,2+A2,3)(B3,1+B1,1); C0,0−= M25;C0,1+= M25;C2,0−= M25;C2,1+= M25;
M26 = (A3,2+A2,2)(B2,0+B0,0+B2,1 + B0,1); C1,1+= M26;C3,1+= M26;
M27 = (A2,3+A3,3)(B3,0+B1,0+B3,1 + B1,1); C0,0+= M27;C2,0+= M27;
M28 = (A0,0+A0,2+A1,1+A1,3)(B2,2 + B3,3); C0,0−= M28;C1,1−= M28;C0,2+= M28;C1,3+= M28;
M29 = (A1,0+A1,2+A1,1+A1,3)(B2,2); C1,0−= M29;C1,1+= M29;C1,2+= M29;C1,3−= M29;
M30 = (A0,0+A0,2)(B2,3+B3,3); C0,1−= M30;C1,1−= M30;C0,3+= M30;C1,3+= M30;
M31 = (A1,1+A1,3)(B3,2+B2,2); C0,0−= M31;C1,0−= M31;C0,2+= M31;C1,2+= M31;
M32 = (A0,0+A0,2+A0,1+A0,3)(B3,3); C0,0+= M32;C0,1−= M32;C0,2−= M32;C0,3+= M32;
M33 = (A1,0+A1,2+A0,0+A0,2)(B2,2 + B2,3); C1,1−= M33;C1,3+= M33;
M34 = (A0,1+A0,3+A1,1+A1,3)(B3,2 + B3,3); C0,0−= M34;C0,2+= M34;
M35 = (A2,0+A0,0+A3,1+A1,1)(B0,0 + B0,2+B1,1+B1,3); C2,2+= M35;C3,3+= M35;
M36 = (A3,0+A1,0+A3,1+A1,1)(B0,0 + B0,2); C3,2+= M36;C3,3−= M36;
M37 = (A2,0+A0,0)(B0,1+B0,3+B1,1 + B1,3); C2,3+= M37;C3,3+= M37;
M38 = (A3,1+A1,1)(B1,0+B1,2+B0,0 + B0,2); C2,2+= M38;C3,2+= M38;
M39 = (A2,0+A0,0+A2,1+A0,1)(B1,1 + B1,3); C2,2−= M39;C2,3+= M39;
M40 = (A3,0+A1,0+A2,0+A0,0)(B0,0 + B0,2+B0,1+B0,3); C3,3+= M40;
M41 = (A2,1+A0,1+A3,1+A1,1)(B1,0 + B1,2+B1,1+B1,3); C2,2+= M41;
M42 = (A0,2+A2,2+A1,3+A3,3)(B2,0 + B2,2+B3,1+B3,3); C0,0+= M42;C1,1+= M42;
M43 = (A1,2+A3,2+A1,3+A3,3)(B2,0 + B2,2); C1,0+= M43;C1,1−= M43;
M44 = (A0,2+A2,2)(B2,1+B2,3+B3,1 + B3,3); C0,1+= M44;C1,1+= M44;
M45 = (A1,3+A3,3)(B3,0+B3,2+B2,0 + B2,2); C0,0+= M45;C1,0+= M45;
M46 = (A0,2+A2,2+A0,3+A2,3)(B3,1 + B3,3); C0,0−= M46;C0,1+= M46;
M47 = (A1,2+A3,2+A0,2+A2,2)(B2,0 + B2,2+B2,1+B2,3); C1,1+= M47;
M48 = (A0,3+A2,3+A1,3+A3,3)(B3,0 + B3,2+B3,1+B3,3); C0,0+= M48;

Figure 3.4: Computations for two-level Strassen.
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by appropriately picking γi, δi, εi ∈ {−1, 0, 1}. Importantly, the computation

now requires 49 multiplications for submatrices as opposed to 64 for a conven-

tional gemm.

To extend the insights from Section 3.1.4 so as to integrate two-level

Strassen into the BLIS gemm implementation, we incorporate the addition

of up to four submatrices of A and B, the updates of up to four submatrices

of C inside the micro-kernel, and the tracking of up to four submatrices in the

loops in BLIS.

3.1.6 Additional levels

A pattern now emerges. The operation needed to integrate k levels of

Strassen is given by

M =
(∑lX−1

s=0 δsXs

)(∑lV −1
t=0 εtVt

)
;Cr+= γrM for r = 0, . . . , lC − 1. (3.3)

For each number, l, of levels of Strassen that are integrated, a table can

then be created that captures all the computations to be executed.

3.2 Implementation and analysis

We now discuss the details of how we adapt the high-performance Go-

toBLAS approach to these specialized operations to yield building blocks for

a family of Strassen implementations. Next, we also give a performance

model for comparing members of this family.

30



3.2.1 Implementations

We implemented a family of algorithms for up to two levels1 of Strassen

for double precision arithmetic and data, building upon the BLIS framework.

Building blocks

The BLIS framework provides three primitives for composing gemm:

a routine for packing Bp into B̃p, a routine for packing Ai into Ãi, and a micro-

kernel for updating an mR × nR submatrix of C. The first two are typically

written in C while the last one is typically written in inlined assembly code2.

To implement a typical operation given in (3.3),

• the routine for packing Bp is modified to integrate the addition of mul-

tiple matrices Vt into packed buffer B̃p;

• the routine for packingAi is modified to integrate the addition of multiple

matrices Xs into packed buffer Ãi; and

• the micro-kernel is modified to integrate the addition of the result to

multiple submatrices.

1We can support three or more levels of Strassen, by modifying the packing routines
and the micro-kernel to incorporate more summands. However, the crossover point for
the three-level Strassen to outperform all one/two-level Strassen implementations is very
large (∼ 10000 for square matrices). There are also concerns regarding to numerical stability
issues with many levels of recursions. So we don’t go beyond two levels in this chapter.

2The inlined assembly code is expressed in GNU extended assembly syntax with asm and
written to utilize SIMD vector instructions such as SSE2 and AVX.
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Variations on a theme

The members of our family of Strassen implementations differ by how

many levels of Strassen they incorporate and which of the above described

modified primitives they use:

• Naive Strassen: A traditional implementation with temporary buffers.

• AB Strassen: Integrates the addition of matrices into the packing of

buffers Ãi and B̃p but creates explicit temporary buffers for matrices M .

• ABC Strassen: Integrates the addition of matrices into the packing

of buffers Ãi and B̃p and the addition of the result of the micro-kernel

computation to multiple submatrices of C. For small problem size k

(this shape is also called rank-k update), this version has the advantage

over AB Strassen that the temporary matrix M is not moved in and

out of memory multiple times. The disadvantage is that for large k the

submatrices of C to which contributions are added are moved in and out

of memory multiple times instead.

Different choices lead to a family of Strassen implementations.

3.2.2 Performance model

In order to compare the performance of the traditional BLAS dgemm

routine and the various implementations of Strassen, we define the effective
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GFLOPS metric for m× k × n matrix multiplication, similar to [9, 42, 79]:

effective GFLOPS =
2 ·m · n · k

time (in seconds)
· 10−9. (3.4)

We next derive a model to predict the execution time T and the effective

GFLOPS of the traditional BLAS dgemm and the various implementations

of Strassen. Theoretical predictions allow us to compare and contrast dif-

ferent implementation decisions, help with performance debugging, and (if

sufficiently accurate) can be used to choose the right member of the family of

implementations as a function of the number of threads used and/or problem

size.

Assumption

Our performance model assumes that the underlying architecture has a

modern memory hierarchy with fast caches and relatively slow main memory

(DRAM). We assume the latency for accessing the fast caches can be ignored

(either because it can be overlapped with computation or because it can be

amortized over sufficient computation) while the latency of loading from main

memory is exposed. For memory store operations, our model assumes that

a lazy write-back policy guarantees the time for storing into fast caches can

be hidden. The slow memory operations for BLAS dgemm and the various

implementation of Strassen consist of three parts:

• memory packing in (adapted) dgemm routine;

• reading/writing the submatrices of C in (adapted) dgemm routine; and
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τa Time (in seconds) of one arithmetic (floating point) operation.

τb
(Bandwidth) Amortized time (in seconds) of 8 Bytes contiguous data
movement from DRAM to cache.

T Total execution time (in seconds).
Ta The total time for arithmetic operations (in seconds).
Tm Time for memory operations (in seconds).
T×a Ta for submatrix multiplications.

T
A+
a , T

B+
a , T

C+
a Ta for extra submatrix additions.

T
A×
m , T

B×
m Tm for reading submatrices in packing routines (Figure 3.3).

T
Ã×
m ,T

B̃×
m Tm for writing submatrices in packing routines (Figure 3.3).

T
C×
m Tm for reading and writing submatrices in micro-kernel (Figure 3.3).

T
A+
m , T

B+
m , T

C+
m

Tm for reading or writing submatrices, related to the temporary buffer
as part of Naive Strassen and AB Strassen.

NX
a /N

X
m Coefficient for the corresponding TX

a /T
X
m .

Figure 3.5: Notation table for Strassen performance model.

• reading/writing of the temporary buffer that are part of Naive Strassen

and AB Strassen, outside (adapted) dgemm routine.

Based on these assumptions, the execution time is dominated by the arithmetic

operations and the slow memory operations.

Notation

Parameter τa denotes the time (in seconds) of one arithmetic (floating

point) operation, i.e., the reciprocal of the theoretical peak GFLOPS of the

system. Parameter τb (bandwidth, memory operation) denotes the amortized

time (in seconds) of one unit (one double precision floating point number, or

eight bytes) of contiguous data movement from DRAM to cache. In practice,

τb =
8(Bytes)

bandwidth (in GBytes/s)
· 10−9.

For single core, we need to further multiply it by the number of channels.
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type τ dgemm one-level two-level
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2
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n
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m
4
n
4

Figure 3.6: Theoretical run time breakdown analysis of BLAS dgemm and
various implementations of Strassen. The time shown in the first column
for dgemm, one-level Strassen, two-level Strassen can be computed sep-
arately by multiplying the parameter in τ column with the number in the
corresponding entries. Due to the software prefetching effects, the row marked
with (∗) needs to be multiplied by an additional parameter λ ∈ [0.5, 1], which
denotes the prefetching efficiency. λ is adjusted to match BLIS dgemm per-
formance.

The total execution time (in seconds), T , is broken down into the time

for arithmetic operations, Ta, and memory operations:

T = Ta + Tm. (3.5)

The notations used in our model are summarized in Figure 3.5.
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NA×
m NB×

m NC×
m NA+

m NB+
m NC+

m

dgemm 1 1 1 - - -

one-level

ABC 12 12 12 - - -

AB 12 12 7 - - 36

Naive 7 7 7 19 19 36

two-level

ABC 194 194 144 - - -

AB 194 194 49 - - 432

Naive 49 49 49 293 293 432

Figure 3.7: The coefficient NX
m mapping table for computing Tm in the per-

formance model.

Arithmetic Operations

We break down Ta into separate terms:

Ta = T×a + TA+
a + TB+

a + TC+
a , (3.6)

where T×a is the arithmetic time for submatrix multiplication, and TA+
a , TB+

a ,

TC+
a denote the arithmetic time of extra additions with submatrices of A,

B, C, respectively. For dgemm since there are no extra additions, Ta =

2mnk · τa. For one-level Strassen, Ta is comprised of 7 submatrix multi-

plications, 5 extra additions with submatrices of A, 5 extra additions with

submatrices of B, and 12 extra additions with submatrices of C. Therefore,

Ta = (1.75mnk+2.5mk+2.5kn+6mn) · τa. Note that the matrix addition ac-

tually involves 2 floating point operations for each entry because they are cast

as FMA instructions. Similar analyses can be applied to compute Ta of a two-

level Strassen implementation. A full analysis is summarized in Figures 3.6
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and 3.7.

Memory Operations

The total data movement overhead is determined by both the original

matrix sizes m, n, k, and block sizes mC , nC , kC in our implementation Fig-

ure 3.2. We characterize each memory operation term in Figure 3.6 by its

read/write type and the amount of memory (one unit=double precision float-

ing number size=eight bytes) involved in the movement. We decompose Tm

into

Tm = NA×
m · TA×m +NB×

m · TB×m +NC×
m · TC×m +NA+

m · TA+
m +NB+

m · TB+
m

+NC+
m · TC+

m , (3.7)

where TA×m , TB×m are the data movement time for reading from submatrices of

A, B, respectively, for memory packing in (adapted) dgemm routine; TC×m is

the data movement time for loading and storing submatrices of C in (adapted)

dgemm routine; TA+
m , TB+

m , TC+
m are the data movement time for loading or

storing submatrices of A, B, C, respectively, related to the temporary buffer as

part of Naive Strassen and AB Strassen, outside (adapted) dgemm rou-

tine; the NX
m s denote the corresponding coefficients, which are also tabulated

in Figure 3.7.

All write operations (T Ã×m , T B̃×m for storing submatrices of A, B, re-

spectively, into packing buffers) are omitted because our assumption of lazy

write-back policy with fast caches. Notice that memory operations can recur
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multiple times depending on the loop in which they reside. For instance, for

two-level Strassen, TC×m = 2dk/4
kc
em

4
n
4
τb denotes the cost of reading and writ-

ing the m
4
× n

4
submatrices of C as intermediate result inside the micro-kernel.

This is a step function proportional to k, because submatrices of C are used

to accumulate the rank-k update in the 5th loop in Figure 3.2.

3.2.3 Discussion

From the analysis summarized in Figures 3.6 and 3.7 we can make

predictions about the relative performance of the various implementations. It

helps to also view the predictions as graphs, which we give in Figure 3.8, using

parameters that capture the architecture described in Section 3.3.1.

• Asymptotically, the two-level Strassen implementations outperform

corresponding one-level Strassen implementations, which in turn out-

perform the traditional dgemm implementation.

• The graph for m = k = n, 1 core, shows that for smaller square matri-

ces, ABC Strassen outperforms AB Strassen, but for larger square

matrices this trend reverses. This holds for both one-level and two-level

Strassen. The reason is that, for small k, ABC Strassen reduced the

number of times the temporary matrix M needs to be brought in from

memory to be added to submatrices of C. For large k, it increases the

number of times the elements of those submatrices of C themselves are

moved in and out of memory.
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Figure 3.8: Performance of the various implementations on an Intel Xeon
E5 2680 v2 (Ivybridge) processor (single core). Left: modeled performance.
Right: actual performance. The range of the y-axis does not start at 0 to
make the graphs more readable and 28.32 marks theoretical peak performance
for this architecture.
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• The graph for m = n = 16000, k varies, 1 core, is particularly interest-

ing: it shows that for k equal to the appropriate multiple of kC (k = 2kC

for one-level and k = 4kC for two-level) ABC Strassen performs dra-

matically better than the other implementations, as expected.

The bottom line: the analysis predicts that, depending on the problem size, a

different implementation may have its advantages.

3.3 Performance experiments

We give details on the performance experiments for our implementa-

tions. The current version of Strassen dgemm is designed for the Intel

Sandy-Bridge/Ivy-Bridge processor and Intel Xeon Phi coprocessor (MIC Ar-

chitecture, KNC).

3.3.1 Single node experiments

Firstly, we reveal the details of single node experiments, using single-

core and multi-core Strassen implementations.

Implementation

The implementations are in C, utilizing SSE2 and AVX intrinsics and

assembly, compiled with the Intel C compiler version 15.0.3 with optimization

flag -O3. In addition, we compare against the standard BLIS implementation

(Version 0.1.8) from which our implementations are derived as well as Intel

MKL’s dgemm (Version 11.2.3) [61].
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Target architecture

We measure the CPU performance results on the Maverick system at

the Texas Advanced Computing Center (TACC). Each node of that system

consists of a dual-socket (10 cores/socket) Intel Xeon E5-2680 v2 (Ivy Bridge)

processors with 12.8 GB/core of memory (Peak Bandwidth: 59.7 GB/s with

four channels) and a three-level cache: 32 KB L1 data cache, 256 KB L2 cache

and 25.6 MB L3 cache. The stable CPU clockrate is 3.54 GHz when a single

core is utilized (28.32 GFLOPS peak, marked in the graphs) and 3.10 GHz

when five or more cores are in use (24.8 GLOPS/core peak). To set thread

affinity and to ensure the computation and the memory allocation all reside

on the same socket, we use KMP AFFINITY=compact.

We choose the parameters nR = 4, mR = 8, kC = 256, nC = 4096

and mC = 96. This makes the size of the packing buffer Ãi 192 KB and

B̃p 8192 KB, which then fit the L2 cache and L3 cache, respectively. These

parameters are consistent with parameters used for the standard BLIS dgemm

implementation for this architecture.

Each socket consists of 10 cores, allowing us to also perform multi-

threaded experiments. Parallelization is implemented mirroring that described

in [108], using OpenMP directives that parallelize the third loop around the

micro-kernel in Figure 3.2.
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Figure 3.9: Performance of the various implementations on an Intel Xeon E5
2680 v2 (Ivybridge) processor (one and ten cores). Left: 5 core. Right: 10
core. The range of the y-axis does not start at 0 to make the graphs more
readable.
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Results

Results when using single core are presented in Figure 3.8 (right col-

umn). As expected, eventually two-level AB Strassen performs best, hand-

ily beating conventional dgemm. The exception is the case where k is fixed

to equal 1024 = 4 × kC , which is the natural blocking size for a two-level

Strassen based on our ideas. For those experiments ABC Strassen wins

out, as expected.

Figure 3.9 reports results for five and ten cores, all within the same

socket. We do not report results for twenty cores (two sockets), since this

results in a substantial performance reduction for all our implementations,

including the standard BLIS dgemm, relative to the MKL dgemm. This

exposes a performance bug in BLIS that has been reported.

When using many cores, memory bandwidth contention affects the per-

formance of the various Strassen implementations, reducing the benefits rel-

ative to a standard dgemm implementation.

3.3.2 Many-core experiments

To examine whether the techniques scale to a large number of cores, we

port our implementation of one-level ABC Strassen to the Intel Xeon Phi

coprocessor.
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Implementation

The implementations of ABC Strassen are in C and AVX512 intrinsics

and assembly, compiled with the Intel C compiler version 15.0.2 with opti-

mization flag -mmic -O3. The BLIS and ABC Strassen both parallelize the

second and third loop around the micro-kernel, as described for BLIS in [108].

Target architecture

We run the Xeon Phi performance experiments on the SE10P Copro-

cessor incorporated into nodes of the Stampede system at TACC. This copro-

cessor has a peak performance of 1056 GFLOPS (for 60 cores with 240 threads

used by BLIS) and 8 GB of GDDR5 DRAM with a peak bandwidth of 352

GB/s. It has 512 KB L2 cache, but no L3 cache.

We choose the parameters nR = 8, mR = 30, kC = 240, nC = 14400

and mC = 120. This makes the size of the packing buffer Ãi 225 KB and

B̃p 27000 KB, which fits L2 cache and main memory separately (no L3 cache

on Xeon Phi). These choices are consistent with those used by BLIS for this

architecture.

Results

As illustrated in Figure 3.10, relative to the BLIS dgemm implemen-

tation, the one-level ABC Strassen shows a nontrivial improvement for a

rank-k update with a fixed (large) matrix C. While the BLIS implementation

on which our implementation of ABC Strassen is based used to be highly
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competitive with MKL’s dgemm (as reported in [108]), recent improvements

in that library demonstrate that the BLIS implementation needs an update.

We do not think there is a fundamental reason why our observations can-

not be used to similarly accelerate MKL’s dgemm, since it also implements

GotoBLAS algorithm.

3.3.3 Distributed memory experiments

Finally, we demonstrate how the ABC Strassen implementation can

be used to accelerate a distributed memory implementation of dgemm.

Implementation

We implement the Scalable Universal Matrix Multiplication Algorithm

(SUMMA) [120] with MPI. This algorithm distributes the algorithm to a mesh

of MPI processes using a 2D block cyclic distribution. The multiplication is

broken down into a sequence of rank-b updates,

C := AB + C =
(
A0 · · · AK−1

) B0

...
BK−1

+ C

= A0B0 + · · ·+ AK−1BK−1 + C

where each Ap consists of (approximately) b columns and each Bp consists of

(approximately) b rows. For each rank-b update Ap is broadcast within rows of

the mesh and Bp is broadcast within columns of the mesh, after which locally

a rank-b update with the arriving submatrices is performed to update the local

block of C.
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Target architecture

The distributed memory experiments are performed on the same ma-

chine described in Section 3.3.1, using the mvapich2 version 2.1 [58] imple-

mentation of MPI. Each node has two sockets, and each socket has ten cores.

Results

Figure 3.11 reports weak scalability on up to 32 nodes (64 sockets,

640 cores). For these experiments we choose the MPI mesh of processes to

be square, with one MPI process per socket, and attained thread parallelism

among the ten cores in a socket within BLIS, MKL, or any of our Strassen

implementations.

It is well-known that the SUMMA algorithm is weakly scalable in the

sense that efficiency essentially remains constant if the local memory dedicated

to matrices A, B, C, and temporary buffers is kept constant. For this reason,

the local problem size is fixed to equal m = k = n = 16000 so that the global

problem becomes m = k = n = 16000 × N when an N × N mesh of sockets

(MPI processes) is utilized. As expected, the graph shows that the SUMMA

algorithm is weakly scalable regardless of which local gemm algorithm is used.

The local computation within the SUMMA algorithm matches the shape for

which ABC Strassen is a natural choice when the rank-k updates are per-

formed with b = 1024. For this reason, the one-level and two-level ABC

Strassen implementations achieve the best performance.

What this experiment shows is that the benefit of using our Strassen
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Figure 3.11: Performance of the various implementations on distributed mem-
ory (weak scalability).
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implementations can be easily transferred to other algorithms that are rich in

large rank-k updates.

3.4 Summary

We have presented novel insights into the implementations of Strassen

that greatly reduce overhead that was inherent in previous formulations and

had been assumed to be insurmountable. These insights have yielded a family

of algorithms that outperform conventional high-performance implementations

of gemm as well as naive implementations. Components that are part of the

BLIS framework for implementing BLAS-like libraries are modified to facilitate

implementation. Implementations and performance experiments are presented

to demonstrate performance benefits for single core, multi-core, many-core,

and distributed memory parallel implementations. Together, this advances

nearly 50 years of research into the theory and practice of Strassen.

Our analysis shows that the ABC Strassen implementation fulfills our

claim that Strassen can outperform classical gemm for small matrices and

small k while requiring no temporary buffers beyond those already internal to

high-performance gemm implementations. The AB Strassen implementation

becomes competitive once k is larger. It only requires a m
2L
× n

2L
temporary

matrix for an L-level Strassen.
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Chapter 4

Practical Fast Matrix Multiplication

Algorithms

Over the last half century, Strassen has fueled many theoretical im-

provements such as other variations of Strassen-like FMM algorithms. In this

chapter, we extend insights on how to express multiple levels of Strassen

in terms of Kronecker products [51] to multi-level FMM algorithms, facilitat-

ing a code generator for all FMM methods from [9] (including Strassen), in

terms of the building blocks created in Chapter 3, but allowing different FMM

algorithms to be used for each level. Importantly and unique to this work,

the code generator also yields performance models that are accurate enough

to guide the choice of a FMM implementation as a function of problem size

and shape, facilitating the creation of “poly-algorithms” [77]. Performance

results from single core and multi-core shared memory systems support the

theoretical insights.

This chapter is based on the conference paper [55] with minor modifications: “Jianyu
Huang, Leslie Rice, Devin A. Matthews, and Robert A. van de Geijn. Generating families
of practical fast matrix multiplication algorithms. In 31th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2017), pages 656-667, May 2017.” I am the main
contributor in charge of problem formulation, algorithm development, performance analysis,
and experimental validations.
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4.1 Fast matrix multiplication basics

We now present the basic idea that underlies families of FMM algo-

rithms and how to generalize a one-level formula to multi-level FMM algo-

rithms utilizing Kronecker products and recursive block storage indexing.

4.1.1 One-level fast matrix multiplication algorithms

In [9], the theory of tensor contractions is used to find a large number

of FMM algorithms. In this subsection, we use the output (the resulting

algorithms) of their approach.

Generalizing the partitioning for Strassen, consider C := C + AB,

where C, A, and B are m × n, m × k, and k × n matrices, respectively. A

〈m̃, k̃, ñ〉 FMM algorithm is defined [13, 9, 6] by partitioning

C=

 C0 ··· Cñ−1

...
...

C(m̃−1)ñ ··· Cm̃ñ−1

, A=

 A0 ··· Ak̃−1
...

...
A(m̃−1)k̃ ··· Am̃k̃−1

 ,

and B=

 B0 ··· Bñ−1

...
...

B(k̃−1)ñ ··· Bk̃ñ−1

 .

Note that Ai, Bj, and Cp are the submatrices of A, B and C, with a single

index in the row major order. Then, C := C + AB is computed by,

for r = 0, ..., R− 1,

Mr :=

(
m̃k̃−1∑
i=0

uirAi

)
×
(
k̃ñ−1∑
j=0

vjrBj

)
;

Cp+= wprMr (p = 0, ..., m̃ñ− 1)

(4.1)
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M0 =(A0 + A3)(B0 +B3); C0+= M0;C3+= M0;
M1 =(A2 + A3)B0; C2+= M1;C3−= M1;
M2 =A0(B1 −B3); C1+= M2;C3+= M2;
M3 =A3(B2 −B0); C0+= M3;C2+= M3;
M4 =(A0 + A1)B3; C1+= M4;C0−= M4;
M5 =(A2 − A0)(B0 +B1); C3+= M5;
M6 =(A1 − A3)(B2 +B3); C0+= M6;

Figure 4.1: All operations for one-level Strassen. Compared to Figure 3.1,
the indeces for the submatrices of A, B, and C have been changed.

where (×) is a matrix multiplication that can be done recursively, uir, vjr, and

wpr are entries of a (m̃k̃)×R matrix U , a (k̃ñ)×R matrix V , and a (m̃ñ)×R

matrix W , respectively. Therefore, the classical matrix multiplication which

needs m̃k̃ñ submatrix multiplications can be completed with R submatrix

multiplications. The set of coefficients that determine the 〈m̃, k̃, ñ〉 algorithm

is denoted as JU, V,W K.

For example, assuming thatm, n, and k are all even, one-level Strassen

has 〈2, 2, 2〉 partition dimensions and, given the partitioning,

X =

(
X0 X1

X2 X3

)
for X ∈ {A,B,C} (4.2)

and computations in Figure 4.1,

J

1 0 1 0 1 −1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 −1

,
1 1 0 −1 0 1 0

0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 −1 0 1 0 1

,
1 0 0 1 −1 0 1

0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 −1 1 0 0 1 0

K

(4.3)

specifies JU, V,W K for one-level Strassen. Another example of 〈3, 2, 3〉 FMM

algorithm can be found in Appendix C.
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〈m̃, k̃, ñ〉 Ref. m̃k̃ñ R
Speedup (%)

Theory
Practical #1 Practical #2
Ours [9] Ours [9]

〈2, 2, 2〉 [115] 8 7 14.3 11.9 -3.0 13.1 13.1
〈2, 3, 2〉 [9] 12 11 9.1 5.5 -13.1 7.7 7.7
〈2, 3, 4〉 [9] 24 20 20.0 11.9 -8.0 16.3 17.0
〈2, 4, 3〉 [6] 24 20 20.0 4.8 -15.3 14.9 16.6
〈2, 5, 2〉 [6] 20 18 11.1 1.5 -23.1 8.6 8.3
〈3, 2, 2〉 [6] 12 11 9.1 7.1 -6.6 7.2 7.5
〈3, 2, 3〉 [6] 18 15 20.0 14.1 -0.7 17.2 16.8
〈3, 2, 4〉 [6] 24 20 20.0 11.9 -1.8 16.1 17.0
〈3, 3, 2〉 [6] 18 15 20.0 11.4 -8.1 17.3 16.5
〈3, 3, 3〉 [104] 27 23 17.4 8.6 -9.3 14.4 14.7
〈3, 3, 6〉 [104] 54 40 35.0 -34.0 -41.6 24.2 20.1
〈3, 4, 2〉 [9] 24 20 20.0 4.9 -15.7 16.0 16.8
〈3, 4, 3〉 [104] 36 29 24.1 8.4 -12.6 18.1 20.1
〈3, 5, 3〉 [104] 45 36 25.0 5.2 -20.6 19.1 18.9
〈3, 6, 3〉 [104] 54 40 35.0 -21.6 -64.5 19.5 17.8
〈4, 2, 2〉 [6] 16 14 14.3 9.4 -4.7 11.9 12.2
〈4, 2, 3〉 [9] 24 20 20.0 12.1 -2.3 15.9 17.3
〈4, 2, 4〉 [6] 32 26 23.1 10.4 -2.7 18.4 19.1
〈4, 3, 2〉 [6] 24 20 20.0 11.3 -7.8 16.8 15.7
〈4, 3, 3〉 [6] 36 29 24.1 8.1 -8.4 19.8 20.0
〈4, 4, 2〉 [6] 32 26 23.1 -4.2 -18.4 17.1 18.5
〈5, 2, 2〉 [6] 20 18 11.1 7.0 -6.7 8.2 8.5
〈6, 3, 3〉 [104] 54 40 35.0 -33.4 -42.2 24.0 20.2

Figure 4.2: Theoretical and practical speedup for various FMM algorithms
(double precision). m̃k̃ñ is the number of multiplication for classical matrix
multiplication algorithm. R is the number of multiplication for fast matrix
multiplication algorithm. Theoretical speedup is the speedup per recursive
step. Practical #1 speedup is the speedup for one-level FMM algorithms
compared with gemm when m = n = 14400, k = 480 (rank-k updates). Prac-
tical #2 speedup is the speedup for one-level FMM algorithms compared with
gemm when m = n = 14400, k = 12000 (approximately square). We report
the practical speedup of the best implementation of our generated code (gener-
ated gemm) and the implementations in [9] (linked with Intel MKL) on single
core. More details about the experiment setup is described in Section 4.3.1.
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Figure 4.2 summarizes a number of such algorithms1 that can be found

in the literature that we eventually test in Section 4.3. We only consider

2 ≤ m̃, k̃, ñ ≤ 6 and don’t include arbitrary precision approximate (APA)

algorithms [12], due to their questionable numerical stability.

4.1.2 Kronecker product

If X and Y are m × n and p × q matrices with (i, j) entries denoted

by xi,j and yi,j, respectively, then the Kronecker product [41] X ⊗ Y is the

mp× nq matrix given by

X ⊗ Y =

 x0,0Y · · · x0,n−1Y
...

. . .
...

xm−1,0Y · · · xm−1,n−1Y

 .

Thus, entry (X ⊗ Y )p·r+v,q·s+w = xr,syv,w.

4.1.3 Recursive block indexing (Morton-like ordering)

An example of recursive block storage indexing (Morton-like ordering)

[37] is given in Figure 4.3. In this example, A undergoes three levels of recursive

splitting, and each submatrix of A is indexed in row major form. By indexing

A, B, and C in this manner, data locality is maintained when operations are

performed on their respective submatrices.

1In Figure 4.2, the symmetric rotations (e.g., 〈2, 3, 4〉 vs. 〈2, 4, 3〉) may have different

performances. This is determined by the block size kC and the partition dimension k̃. If
k̃ is relatively large for rank-k updates, then the problem size k/k̃ after partition might be
smaller than kC .
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Figure 4.3: Illustration of recursive block storage indexing (Morton-like order-

ing) [37] on m × k matrix A where the partition dimensions m̃ = k̃ = 2 for
three-level recursions.

4.1.4 Representing two-level FMM with the Kronecker product

In [51], it is shown that multi-level 〈2, 2, 2〉 Strassen can be repre-

sented with Kronecker products. In this section, we extend this insight to

multi-level FMM algorithms, where each level can use a different choice of

〈m̃, k̃, ñ〉.

Assume each submatrix of A, B, and C is partitioned with another

level of 〈m̃′, k̃′, ñ′〉 FMM algorithm with the coefficients JU ′, V ′,W ′K, and Ai,

Bj, Cp are the submatrices of A, B and C, with a single index in two-level

recursive block storage indexing. Then it can be verified2 that C := C + AB

is computed by,

for r = 0, ..., R ·R′ − 1,

Mr :=

(
m̃k̃·m̃′k̃′−1∑

i=0

(U ⊗ U ′)i,rAi
)
×
(
k̃ñ·k̃′ñ′−1∑

j=0

(V ⊗ V ′)j,rBj

)
;

Cp+= (W ⊗W ′)p,rMr(p = 0, ..., m̃ñ · m̃′ñ′ − 1)

2The complete proof is given as Theorem D.1 in Appendix D.
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where ⊗ represents Kronecker Product. Note that U⊗U ′, V ⊗V ′, and W⊗W ′

are (m̃k̃ · m̃′k̃′)× (R ·R′), (k̃ñ · k̃′ñ′)× (R ·R′), (m̃ñ · m̃′ñ′)× (R ·R′) matrices,

respectively.

The set of coefficients of a two-level 〈m̃, k̃, ñ〉 and 〈m̃′, k̃′, ñ′〉 FMM

algorithm can be denoted as JU ⊗ U ′, V ⊗ V ′,W ⊗W ′K.

For example, the two-level Strassen is represented by the coefficients

JU⊗U, V ⊗V,W⊗W K where JU, V,W K are the one-level Strassen coefficients

given in Equation (4.3).

4.1.5 Additional levels of FMM

Comparing one-level and two-level FMM algorithms, the same skeleton

pattern emerges. The formula for defining L-level FMM algorithms is given

by3,

for r = 0, ...,
∏L−1

l=0 Rl − 1,

Mr :=


L−1∏
l=0

m̃lk̃l−1∑
i=0

(
L−1⊗
l=0

Ul)i,rAi

×


L−1∏
l=0

k̃lñl−1∑
j=0

(
L−1⊗
l=0

Vl)j,rBj

;

Cp+= (
L−1⊗
l=0

Wl)p,rMr(p = 0, ...,
∏L−1

l=0 m̃lñl − 1)

(4.4)

The set of coefficients of an L-level 〈m̃l, k̃l, ñl〉 (l=0, 1, ..., L−1) FMM

algorithm can be denoted as J
⊗L−1

l=0 Ul,
⊗L−1

l=0 Vl,
⊗L−1

l=0 WlK.

3The complete proof is given as Theorem D.2 in Appendix D.
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4.2 Implementation and analysis

The last section shows that families of one-level FMM algorithms can be

specified by 〈m̃, k̃, ñ〉 and JU, V,W K. It also shows how the Kronecker product

can be used to generate multi-level FMM algorithms that are iterative rather

than recursive. In this section, we discuss a code generator that takes as

input 〈m̃, k̃, ñ〉 and JU, V,W K and as output generates implementations that

build upon the primitives that combine taking linear combinations of matrices

with the packing routines and/or micro-kernels that underlie BLIS. The code

generator also provides a model of cost for each implementation that can then

be used to choose the best FMM algorithm for a matrix of given size and

shape. This code generator can thus generate code for arbitrary levels of FMM

algorithms that can use different FMM choices at each level. In this way, we

have generated and compared more than 20 FMM algorithms (Figure 4.2).

4.2.1 Code generation

Our code generator generates various implementations of FMM algo-

rithms with double precision arithmetic, based on the coefficient representation

JU, V,W K, levels of recursion, and packing routine/micro-kernel incorporation

specifications.

There are two stages for our code generator: generating the skeleton

framework and generating the typical operations given in (4.1).
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Generating the skeleton framework

During this stage, the code generator

• Computes the Kronecker Product of the coefficient matrices JUl, Vl,WlK

in each level l to get the new coefficients J
⊗L−1

l=0 Ul,
⊗L−1

l=0 Vl,
⊗L−1

l=0 WlK.

• Generates the matrix partition code by conceptual recursive block stor-

age indexing with 〈m̃l, k̃l, ñl〉 partition dimensions for each level.

• For the general cases where one or more dimensions are not multiples of

corresponding
∏L−1

l=0 m̃l,
∏L−1

l=0 k̃l,
∏L−1

l=0 ñl, it generates dynamic peeling

[117] code to handle the remaining “fringes” after invoking FMM, which

requires no additional memory.

Generating the typical operations

To generate the code for the typical operations in (4.1), the generator

• Generates packing routines (written in C), that sum a list of submatrices

of A integrated into the packing routine, yielding Ãi, and similarly sum

a list of submatrices of B integrated into the packing routine, yielding

B̃p, extending what is illustrated in Figure 2.1 and Figure 3.2.

• Assembles a specialized micro-kernel comprised of a hand-coded opti-

mized gemm kernel and automatically generated updates to multiple

submatrices of C.
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Further variations

In Chapter 3, a number of variations on the theme illustrated in Fig-

ure 3.2 are discussed:

• Naive FMM: A classical implementation with temporary buffers for

storing the sum of A, B, and the intermediate matrix product Mr.

• AB FMM: The packing routines incorporate the summation of sub-

matrices of A, B into the packing of buffers Ãi and B̃p but explicit

temporary buffers for matrices Mr are used.

• ABC FMM: AB FMM, but with a specialized micro-kernel that

incorporates addition of Mr to multiple submatrices of C.

Incorporating the generation of these variations into the code generator yields

over 100 FMM implementations.4

4.2.2 Performance model

In this subsection, we provide a performance model to predict the ex-

ecution time T for the various FMM implementations generated by our code

generator. Theoretical estimation helps us better understand the computation

and memory footprint of different FMM implementations, and allows us to

avoid exhaustive empirical search when searching for the best implementation

for different problem sizes and shapes. Most importantly, our code generator

423 FMM algorithms (Figure 4.2) × 3 variations × 2 levels.
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can embed our performance model to guide the selection of an FMM imple-

mentation as a function of problem size and shape, with the input 〈m̃l, k̃l, ñl〉

and JUl, Vl,WlK specifications on each level l. These performance models are

themselves automatically generated.

Assumption

Basically, we assume that the architecture has two layers of modern

memory hierarchy: fast caches and relatively slow main memory (DRAM).

For read operations, the latency for accessing cache can be ignored, while the

latency for accessing the main memory is counted; For write operations, we

assume a lazy write-back policy such that the time for writing into fast caches

can be hidden. Based on these assumptions, the memory operations for gemm

and various implementations of FMM algorithms are decomposed into three

parts:

• memory packing shown in Figures 2.1 and 3.2;

• reading/writing the submatrices of C in Figures 2.1 and 3.2; and

• for Naive FMM and AB FMM, reading/writing of the temporary

buffer.

Notation

Notation is summarized in Figure 4.4. The total execution time, T , is

dominated by arithmetic time Ta and memory time Tm ( 2© in Figure 4.5).
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τa Time (in seconds) of one arithmetic (floating point) operation.

τb
(Bandwidth) Amortized time (in seconds) of 8 Bytes contiguous data
movement from DRAM to cache.

T Total execution time (in seconds).
Ta Time for arithmetic operations (in seconds).
Tm Time for memory operations (in seconds).
T×a Ta for submatrix multiplications.

T
A+
a , T

B+
a , T

C+
a Ta for extra submatrix additions.

T
A×
m , T

B×
m Tm for reading submatrices in packing routines (Fig. 2.1 and 3.2).

T
Ã×
m ,T

B̃×
m Tm for writing submatrices in packing routines (Fig. 2.1 and 3.2).

T
C×
m Tm for reading and writing submatrices in micro-kernel (Fig. 2.1 and 3.2).

T
A+
m , T

B+
m , T

C+
m

Tm for reading or writing submatrices, related to the temporary buffer
as part of Naive FMM and AB FMM.

NX
a /N

X
m Coefficient for the corresponding TX

a /T
X
m .

nnz(X) Non-zero entry number in matrix or vector X.

Figure 4.4: Notation table for performance model.

1© Effective GFLOPS = 2 ·m · n · k/T · 10−9

2© T = Ta + Tm

3© Ta = N×a · T×a +NA+
a · TA+

a +NB+
a · TB+

a

+NC+
a · TC+

a

4© Tm = NA×
m · TA×m +NB×

m · TB×m +NC×
m · TC×m

+NA+
m · TA+

m +NB+
m · TB+

m +NC+
m · TC+

m

Figure 4.5: The equations for computing the execution time T and Effective
GFLOPS in our performance model.

Arithmetic operations

Ta is decomposed into submatrix multiplications (T×a ) and submatrix

additions (TA+
a , TB+

a , TC+
a ) ( 3© in Figure 4.5). TX+

a has a coefficient 2 be-

cause under the hood the matrix additions are cast into FMA operations. The

corresponding coefficients NX
a are tabulated in Figure 4.7. For instance, NA+

a
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type τ gemm L-level

T×a - τa 2mnk 2 m

M̃L

n

ÑL

k

K̃L

TA+
a - τa - 2 m

M̃L

k

K̃L

TB+
a - τa - 2 k

K̃L

n

ÑL

TC+
a - τa - 2 m

M̃L

n

ÑL

TA×m r τb mkd n
nc
e m

M̃L

k

K̃L
dn/ÑL

nc
e

T Ã×m w τb mkd n
nc
e m

M̃L

k

K̃L
dn/ÑL

nc
e

TB×m r τb nk n

ÑL

k

K̃L

T B̃×m w τb nk n

ÑL

k

K̃L

TC×m r/w τb 2λmnd k
kc
e 2λ m

M̃L

n

ÑL
dk/K̃L

kc
e

TA+
m r/w τb mk m

M̃L

k

K̃L

TB+
m r/w τb nk n

ÑL

k

K̃L

TC+
m r/w τb mn m

M̃L

n

ÑL

Figure 4.6: The various components of arithmetic and memory operations for
BLAS gemm and various implementations of FMM algorithms. The time
shown in the first column for gemm and L-level FMM algorithms can be
computed separately by multiplying the parameter in τ column with the arith-
metic/memory operation number in the corresponding entries.

= nnz(
⊗
U) − RL for L-level FMM, because computing

∑
((
⊗
U)i,rAi) in

Equation (4.4) involves
∑RL−1

r=0 (nnz((
⊗
U):,r)− 1) = nnz(

⊗
U)−RL subma-

trix additions. Note that X:,r denotes the rth column of X.

Memory operations

Tm is a function of the submatrix sizes {m/M̃L, k/K̃L, n/ÑL}, and

the block sizes {mC , kC , nC} in Figure 2.1 and Figure 3.2, because the mem-
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gemm
L-level

ABC AB Naive

N×a 1 RL RL RL

NA+
a - nnz(

⊗
U)-RL nnz(

⊗
U)-RL nnz(

⊗
U)-RL

NB+
a - nnz(

⊗
V )-RL nnz(

⊗
V )-RL nnz(

⊗
V )-RL

NC+
a - nnz(

⊗
W ) nnz(

⊗
W ) nnz(

⊗
W )

NA×
m 1 nnz(

⊗
U) nnz(

⊗
U) RL

N Ã×
m - - - -

NB×
m 1 nnz(

⊗
V ) nnz(

⊗
V ) RL

N B̃×
m - - - -

NC×
m 1 nnz(

⊗
W ) RL RL

NA+
m - - - nnz(

⊗
U)+RL

NB+
m - - - nnz(

⊗
V )+RL

NC+
m - - 3nnz(

⊗
W ) 3nnz(

⊗
W )

Figure 4.7: The coefficient NX
a /NX

m mapping table for computing Ta/Tm in

the performance model. Here M̃L =
∏L−1

l=0 m̃l, K̃L =
∏L−1

l=0 k̃l, ÑL =
∏L−1

l=0 ñl,⊗
U =

⊗L−1
l=0 Ul,

⊗
V =

⊗L−1
l=0 Vl,

⊗
W =

⊗L−1
l=0 Wl, RL =

∏L−1
l=0 Rl.

ory operation can repeat multiple times according to the loop in which they

reside. Tm is broken down into several components, as shown in 4© in Fig-

ure 4.5. Each memory operation term is characterized in Figure 4.6 by its

read/write type and the amount of memory in units of 64-bit double precision

elements. Note that T Ã×m ,T B̃×m are omitted in 4© because of the assumption

of lazy write-back policy with fast caches. Due to the software prefetching

effects, TC×m =2λ m

M̃L

n

ÑL
dk/K̃L

kc
eτb has an additional parameter λ ∈ [0.5, 1], which

denotes the prefetching efficiency. This λ is adapted to match gemm perfor-
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mance. Note that this is a ceiling function proportional to k, because rank-k

updates for accumulating submatrices of C recur dk/K̃L

kc
e times in 4th loop in

Figure 2.1 and Figure 3.2. The corresponding coefficients NX
m are tabulated

in Figure 4.7. For example, for Naive FMM and AB FMM, computing

Cp+= (
⊗
W )p,rMr(p = 0, ...) in Equation (4.4) involves 2 read and 1 write

related to temporary buffer in slow memory. Therefore, NC×
m = 3nnz(

⊗
W ).

4.2.3 Discussion

We can make estimations about the run time performance of the various

FMM implementations generated by our code generator, based on the analysis

shown in Figures 4.5, 4.6 and 4.7. We use effective GFLOPS (defined in 1© in

Figure 4.5) as the metric to compare the performance of these various FMM

implementations. The architecture-dependent parameters for the model are

given in Section 4.3.1. We demonstrate the performance of two representative

groups of experiments in Figures 4.8 and 4.9.

• Contrary to what was observed in Chapter 3, Naive FMM may perform

better than ABC FMM and AB FMM for relatively large problem

sizes. For example, in Figure 4.8, 〈3, 6, 3〉 (with the maximum theoretical

speedup among all FMM algorithms we test, given in Figure 4.2) has bet-

ter Naive FMM performance than ABC FMM and AB FMM. This

is because the total number of times for packing in 〈3, 6, 3〉 is very large

(NA×
m = nnz(

⊗
U), NB×

m = nnz(
⊗
V )). This magnifies the overhead for

packing with AB FMM and ABC FMM.

64



1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

E
ff

ec
ti

ve
G
F
L
O
P
S

m = n = 14400, 1 level, ABC, 1 core, Actual

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

m = n = 14400, 1 level, ABC, 1 core, Modeled

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

E
ff

ec
ti

ve
G
F
L
O
P
S

m = n = 14400, 1 level, AB, 1 core, Actual

〈2, 2, 2〉 〈2, 3, 2〉 〈2, 3, 4〉 〈2, 4, 3〉
〈2, 5, 2〉 〈3, 2, 2〉 〈3, 2, 3〉 〈3, 2, 4〉
〈3, 3, 2〉 〈3, 3, 3〉 〈3, 3, 6〉 〈3, 4, 2〉
〈3, 4, 3〉 〈3, 5, 3〉 〈3, 6, 3〉 〈4, 2, 2〉
〈4, 2, 3〉 〈4, 2, 4〉 〈4, 3, 2〉 〈4, 3, 3〉
〈4, 4, 2〉 〈5, 2, 2〉 〈6, 3, 3〉 BLIS

MKL

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

m = n = 14400, 1 level, AB, 1 core, Modeled

〈2, 2, 2〉 〈2, 3, 2〉 〈2, 3, 4〉 〈2, 4, 3〉
〈2, 5, 2〉 〈3, 2, 2〉 〈3, 2, 3〉 〈3, 2, 4〉
〈3, 3, 2〉 〈3, 3, 3〉 〈3, 3, 6〉 〈3, 4, 2〉
〈3, 4, 3〉 〈3, 5, 3〉 〈3, 6, 3〉 〈4, 2, 2〉
〈4, 2, 3〉 〈4, 2, 4〉 〈4, 3, 2〉 〈4, 3, 3〉
〈4, 4, 2〉 〈5, 2, 2〉 〈6, 3, 3〉 GEMM

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

E
ff

ec
ti

ve
G
F
L
O
P
S

m = n = 14400, 1 level, Naive, 1 core, Actual

1 2 3 4 5 6 7 8 9 10 11 12

·103
20

25

28.36

30

34

k

m = n = 14400, 1 level, Naive, 1 core, Modeled

Figure 4.8: Performance of generated one-level ABC, AB, Naive FMM imple-
mentations on single core when m=n=14400, k varies. Left column: actual
performance; Right column: modeled performance. Top row: one-level, ABC;
Middle row: one-level, AB; Bottom row: one-level, Naive.
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Figure 4.9: Performance of generated two-level ABC FMM implementations
on single core when m=k=n; m=n=14400, k varies; k=1024, m=n vary. Left
column: actual performance; Right column: modeled performance. Top row:
m=k=n; Middle row: m=n=14400, k varies; Bottom row: k=1024, m=n vary.
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• Contrary to what was observed in [9], for rank-k updates (middle column,

right column, Figure 4.9), 〈2, 2, 2〉 still performs the best with the ABC

FMM implementations ([9] observe some other shapes, e.g., 〈4, 2, 4〉,

tend to have higher performance). This is because their implementations

are similar to Naive FMM, with the overhead for forming the Mr

matrices explicitly.

• Figure 4.8 shows that for small problem size, when k is small, ABC

FMM performs best; when k is large, AB FMM and Naive FMM

perform better. That can be quantitatively explained by comparing the

coefficients of NX
m in Figure 3.7.

• The graph for m = n = 14400, k varies, ABC, 1 core (left column, Fig-

ure 4.8; middle row, Figure 4.9) shows that for k equal to the appropriate

multiple of kC ( k =
∏L−1

l=0 k̃l × kC), ABC FMM achieves the best per-

formance.

4.2.4 Incorporating the performance model into the code generator

For actual performance, even the best implementation has some unex-

pected drops, due to the “fringes” which are caused by the problem sizes not

being divisible by partition dimesions m̃, k̃, ñ. This is not captured by our

performance model. Therefore, given the specific problem size and shape, we

choose the best two implementations predicted by our performance model as

the top two candidate implementations, and then measure the performance in

practice to pick the best one.
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Figure 4.10: Selecting FMM implementations with the performance model.
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In Figure 4.10 we show the performance results on a single core by se-

lecting the generated FMM implementation with the guide of the performance

model, when m=k=n; m=n=14400, k varies; and k=1024, m=n vary.

Overall, this experiment shows that the performance model is accurate

enough in terms of relative performance between various FMM implementa-

tions to guide the choice of a FMM implementation, with the problem sizes and

shapes as the inputs. That will reduce the potential overhead of an exhaustive

empirical search.

4.3 Performance experiments

We present performance evaluations for various generated FMM imple-

mentations.

4.3.1 Implementation and architecture information

The FMM implementations generated by our code generator are written

in C, utilizing SSE2 and AVX assembly, compiled with the Intel C compiler

version 15.0.3 with optimization flag -O3 -mavx.

We compare against our generated dgemm (based on the packing rou-

tines and micro-kernel borrowed from BLIS, marked as BLIS in the perfor-

mance figures) as well as Intel MKL’s dgemm [61] (marked as MKL in the

performance figures).

We measure performance on a dual-socket Intel Xeon E5-2680 v2 (Ivy
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Bridge, 10 cores/socket) processor with 12.8 GB/core of memory (Peak Band-

width: 59.7 GB/s with four channels) and a three-level cache: 32 KB L1 data

cache, 256 KB L2 cache and 25.6 MB L3 cache. The stable CPU clockrate is

3.54 GHz when a single core is utilized (28.32 GFLOPS peak, marked in the

graphs) and 3.10 GHz when ten cores are in use (24.8 GLOPS/core peak). To

set thread affinity and to ensure the computation and the memory allocation

all reside on the same socket, we disable hyper-threading explicitly and use

KMP AFFINITY=compact.

The blocking parameters, nR = 4, mR = 8, kC = 256, nC = 4096

and mC = 96, are consistent with parameters used for the standard BLIS

dgemm implementation for this architecture. This makes the size of the pack-

ing buffer Ãi 192 KB and B̃p 8192 KB, which then fit the L2 cache and L3

cache, respectively.

Parallelization is implemented mirroring that described in [108], using

OpenMP directives that parallelize the third loop around the micro-kernel in

Figure 3.2.

4.3.2 Benefit of hybrid partitions

First, we demonstrate the benefit of using different FMM algorithms

for each level.

We report the performance of different combinations of one-level/two-

level 〈2, 2, 2〉, 〈2, 3, 2〉, and 〈3, 3, 3〉 in Figure 4.11, when k is fixed to 1200

and m = n vary. As suggested and illustrated in Section 4.2.3, ABC FMM
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Figure 4.11: Benefit of hybrid partitions over other partitions.
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performs best for rank-k updates, which is why we only show the ABC FMM

performance.

Overall the hybrid partitions 〈2, 2, 2〉 + 〈2, 3, 2〉 and 〈2, 2, 2〉 + 〈3, 3, 3〉

achieve the best performance. This is because 1200 is close to 2 × 3 × kC ,

meaning that the hybrid partitions of 2 and 3 on the k dimension are more

favorable. This is consistent with what the performance model predicts. Per-

formance benefits are less for 10 cores due to bandwidth limitations, although

performance of hybrid partitions still beats two-level homogeneous partitions.

This experiment demonstrates the benefit of hybrid partitions, facili-

tated by the Kronecker product representation.

4.3.3 Sequential and parallel performance

Results when using a single core are presented in Figure 4.2 and Fig-

ures 4.8 and 4.9. Our generated ABC FMM implementation outperforms AB

FMM and Naive FMM and reference implementations from [9] for rank-k

updates (when k is small). For very large square matrices, our generated AB

FMM and Naive FMM can achieve competitive performance with refer-

ence implementations [9] that are linked with Intel MKL. These experiments

validate our performance model.

Figure 4.12 reports performance results for ten cores within the same

socket. Memory bandwidth contention impacts the performance of various

FMM algorithms when using many cores. Nonetheless we still observe the

speedup of FMM algorithms over gemm. For smaller matrices and special
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Figure 4.12: Performance of the best implementation of our generated FMM
code and reference implementations [9] on one socket (10 core). Top row:
our implementations; Bottom row: reference implementations from [9] (linked
with Intel MKL). Left column: m=k=n; Middle column: m=n=14400, k
varies; Right column: k=1024, m=n vary.
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shapes such as rank-k updates, our generated implementations achieve better

performance than reference implementations [9].

4.4 Summary

We have discussed a code generator framework that can automatically

implement families of Strassen-like fast matrix multiplication algorithms in a

vast design space. To explore this space, automatic generation coupled with

analytic performance analysis is a necessity. On the one hand, the prototype

code generator generates various FMM implementations by expressesing the

composition of multi-level FMM algorithms as Kronecker products. It incor-

porates the matrix summations that must be performed for FMM algorithms

into the inherent packing and micro-kernel operations inside gemm, avoiding

extra workspace requirement and reducing the overhead of memory movement.

On the other hand, it generates an accurate performance model to guide the

selection of a FMM implementation as a function of problem size and shape,

facilitating the creation of poly-algorithms that select the best algorithm for a

problem size. Compared with state-of-the-art results, we observe a significant

performance improvement for smaller matrices and special matrix multiplica-

tion shapes such as rank-k updates, without the need for exhaustive empirical

search.
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Chapter 5

A Practical Strassen’s Algorithm for Tensor

Contraction

Tensor contraction (TC) is an important computational kernel widely

used in numerous applications. It is a multi-dimensional generalization of

matrix multiplication (gemm). While Strassen’s algorithm for gemm is well

studied in theory and practice, extending it to accelerate TC has not been pre-

viously pursued. Thus, we believe this to be the first work to demonstrate how

one can in practice speed up tensor contraction with Strassen’s algorithm. By

adopting a block-scatter-matrix format, a novel matrix-centric tensor layout,

we can conceptually view TC as gemm for a general stride storage, with an

implicit tensor-to-matrix transformation. This insight enables us to tailor the

novel insights for the practical implementation of Strassen in Chapter 3 to

TC, avoiding explicit transpositions (permutations) and extra workspace, and

reducing the overhead of memory movement that is incurred. Performance

benefits are demonstrated with a performance model as well as in practice on

This chapter is based on the journal paper [54] with minor modifications: “Jianyu
Huang, Devin A. Matthews, and Robert A. van de Geijn. Strassen’s algorithm for tensor
contraction. SIAM Journal on Scientific Computing, 40(3):C305-C326, 2018.” I am the
main contributor in charge of problem formulation, algorithm development, performance
analysis, and experimental validations.
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modern single core, multi-core, and distributed memory parallel architectures,

achieving up to 1.3× speedup. The resulting implementations can serve as a

drop-in replacement for various applications with significant speedup.

In this chapter, we use the the special calligraphic font for tensors

(Section 5.1.1), the upright Roman boldface letters for matrix views of tensors

or normal matrices (Section 5.1.4), the normal math italic font for the notation

(time, coefficients, etc.) in the performance model (Section 5.4). For example,

T represents a tensor, T represents the matrix view of T or a normal matrix,

and T represents the total execution time (in seconds) in our performance

model in Section 5.4.

5.1 Background on high-performance tensor contrac-
tion

The definition and notation of tensors and tensor contraction are briefly

reviewed before describing the tensor layouts that enable high-performance

tensor contraction.

5.1.1 Tensor

The concept of matrices is extended to multiple dimensions through

the use of tensors. For example, consider a 3-dimensional (3-D) tensor T of

size 4×6×3. T can be thought of as a 3-dimensional array of elements, where

each element is given by indexing: Ti,j,k ∈ R. The possible values for i, j, and

k are determined by the lengths of the dimensions as given in the tensor size,
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i.e., 0 ≤ i < Ni = 4, 0 ≤ j < Nj = 6, and 0 ≤ k < Nk = 3.

In general, a d-dimensional tensor T ∈ RNi0 ×· · ·×RNid−1 has elements

indexed as Ti0,...,id−1
∈ R for all (i0, . . . , id−1) ∈ Ni0 × . . . × Nid−1

, where M ×

. . . × N is a shorthand notation for the set of all tuples (i, . . . , j), 0 ≤ i <

M ∧ . . .∧ 0 ≤ j < N . The length of the dimension indexed by some symbol x

is given by Nx ∈ N. The indices may be collected in an ordered index bundle

Id = (i0, . . . , id−1), such that TId ∈ R for all Id ∈ Ni0×. . .×Nid−1
. In general we

will denote the dimension of a tensor T as dT , and the bundle length NId ∈ N

as the total length of an index bundle Id, i.e., NId =
∏

i∈Id Ni = Ni0 · . . . ·Nid−1
.

5.1.2 Tensor contraction

Tensor contraction is the generalization of matrix multiplication to

many dimensions. As an example, consider the tensor contraction illustrated in

Figure 5.1a, Ca,b,c+=
∑Nd−1

d=0 Ad,c,a · Bd,b. The summation is usually suppressed

and instead implied by the Einstein summation convention, where indices that

appear twice (once for each of A and B) on the right-hand side are summed

over. In contrast to the definition of matrix multiplication in Chapter 2, tensor

contraction may have more than one index summed over and more than one

non-summed index in each of A and B. The groups of indices that correspond

to i, j, and p in the matrix case are grouped into index bundles Im, Jn, and Pk.

For this example, the bundles are (a, c), (b), and (d), respectively. Other than

involving more indices, tensor contraction is precisely the same mathematical

operation as matrix multiplication.
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For general tensor contractions, let A, B, and C be tensors of any

dimensionality satisfying dA + dB − dC = 2k, k ∈ N. Then, let Im, Jn,

and Pk be index bundles with m = dA − k and n = dB − k. Last, let the

index reordering ΠA((i0, . . . , idA−1)) = (iπA(0), . . . , iπA(dA−1)) be defined by the

bijective map πA : {0, . . . , dA−1} → {0, . . . , dA−1}, and similarly for ΠB and

ΠC. The general definition of tensor contraction is then given by

CΠC(ImJn)+=
∑

Pk∈Np0×...×Npk−1

AΠA(ImPk) · BΠB(PkJn),

where juxtaposition of two index bundles (e.g., ImJn) denotes concatenation.

The indices in the bundles Im and Jn are generally called free, external, or un-

contracted indices, while the indices in the Pk bundle are called bound, internal,

or contracted indices.1 In the following we will suppress the explicit summation

over Pk. The number of leading-order floating point operations required for

tensor contraction is 2NIm ·NJn ·NPk
= 2(

∏
i∈Im Ni) · (

∏
j∈Jn Nj) · (

∏
p∈Pk

Np).

Thus, if the length of each dimension is O(N), the tensor contraction operation

requires O(Nm+n+k) flops.

The example illustrated in Figure 5.1a has index bundles as noted above

and index reordering given by ΠA((i0, i1, i2)) = (i2, i1, i0), ΠB((i0, i1)) = (i0, i1),

and ΠC((i0, i1, i2)) = (i0, i2, i1). Note that, for example, defining Im as (c, a)

would give different index reorderings—the choice of ordering withing the index

1The preferred terms depend on context and specific field of research. In some cases,
these terms have specific meaning beyond the indication of how summation is performed;
for example in quantum chemistry the terms internal and external refer to the diagrammatic
representation of tensor contractions [24].
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bundles and the index reorderings is not unique. The number of floating point

operations and memory accesses for this contraction is identical to that for a

matrix multiplication of (Na ·Nc)×Nd, Nd×Nb, and (Na ·Nc)×Nb matrices,

if performed entirely in-place (i.e., without transposition).

5.1.3 General stride layouts

The well-known column-major and row-major matrix layouts may be

extended to tensors as the generalized column- and row-major tensor layouts,

where elements are stored contiguously along the first dimension or last dimen-

sion, respectively. However, in general we may assume only a general tensor

layout, which extends the general matrix layout [124] by replacing matrix row

and column strides (e.g., rsM and csM) with a stride associated to each tensor

dimension. For a d-dimensional tensor T indexed by Id, the strides sT ;ik ∈ N

for all 0 ≤ k < d form the set ST = (sT ;i0 , . . . , sT ;id−1
), which gives General

Stride element LOCations relative to T0,...,0,

LOCGS(TId , ST ) =
d−1∑
k=0

ik · sT ;ik .

In general, the stride of the dimension indexed in T by a particular symbol x

is denoted by sT ;x. The generalized column-major and row-major layouts can

also be represented using a general stride layout, in which case sT ;ik =
∏k−1

l=0 Nil

and sT ;ik =
∏d−1

l=k+1 Nil , respectively.

In Figure 5.1a, C is stored in the generalized column-major layout. The

numbers represent the location of the element Ca,b,c relative to the element
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(b) Block scatter matrix view of (a), where Ad,c,a, Bd,b, and Ca,b,c are mapped to
matrices Ai,p, Bp,j , and Ci,j : rscatT and cscatT denote the scatter vectors; rbsT
and cbsT denote the block scatter vectors. Element locations are given by the sum
of the row and column scatter vector entries.

Figure 5.1: An example to illustrate Strassen’s algorithm for tensor contrac-
tion. The dashed lines denotes Strassen 2×2 partitions mapping from block
scatter matrix view (bottom) to the original tensor (top). In this example the
partitions are regular subtensors, but this is not required in general.
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C0,0,0 in the tensor storage layout. The strides are sC;a = 1, sC;b = Na = 4, and

sC;c = Na ·Nb = 32. The element location of Ca,b,c is a · sC;a + b · sC;b + c · sC;c =

a+ 4b+ 32c.

5.1.4 Block scatter matrix view

In [85] it is shown that tensors can be represented in a matrix-centric

layout that allows for a simple but efficient implementation of tensor con-

traction using the BLIS framework. The main idea of that work is that the

locations of tensor elements of T can be described in a matrix format, the

Scatter Matrix layout, for an Ni ×Nj matrix view of T , T, very similarly to

the general stride matrix layout,

LOCSM(Ti,j, rscatT , cscatT ) = rscatT ;i + cscatT ;j, (5.1)

where rscatT ∈ NNi and cscatT ∈ NNj . If we define the index bundle Ip of

size p as the set of indices of T that map to columns of T and the index

bundle Jq of size q = dT − p as the set of indices that map to rows of T, then

(by inspection of the general stride layout) we can see that the scatter vector

rscatT with respect to Ip is given by

rscatT ;i =

p−1∑
k=0

ik · sT ;ik , i =

p−1∑
k=0

ik ·
k−1∏
l=0

Nil ,

∀ (i0, . . . , ip−1) ∈ Ni0 × . . .×Nip−1 ;

and similarly for cscatT with respect to Jq.

The relative location of Ca,b,c in Figure 5.1a, or Ci,j in the matrix view

of C in Figure 5.1b is rscatC;i+cscatC;j (e.g., LOCSM(C2,3,1) = LOCSM(C6,3) =
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rscatC;6 +cscatC;3 = 34+12). Here, (1) rscatC;i = a ·sC;a+c ·sC;c = a+32c, i =

a+c·Na = a+4c,∀ (a, c) ∈ Na×Nc; (2) cscatC;j = b·sC;b = 4b, j = b,∀ (b) ∈ Nb.

These scatter vectors are shown on the top and the left of the matrix view of

C in Figure 5.1b.

The general definition of tensor contractions gives a natural mapping

from tensors to matrices through the index bundles Im, Jn, and Pk. Thus,

the bundle Im defines rscatA and rscatC, Jn defines cscatB and cscatC, and Pk

defines cscatA and rscatB. If we define matrices Ai,k, Bk,j, and Ci,j and imbue

them with scatter matrix layouts using the scatter vectors from the correspond-

ing tensors, we can perform tensor contraction using the high-performance

matrix multiplication algorithm introduced in Section 2.1.5, without explicitly

forming those matrices in extra working buffers and incurring the associated

cost of data movement.

Since we are using the BLIS implementation of the GotoBLAS al-

gorithm, we can leverage the fact that these matrices will be partitioned and

packed to introduce further optimizations. In the micro-kernel (Figures 2.1

and 3.2), the matrix C will be partitioned into mR×nR blocks and the matri-

ces A and B will be partitioned into mR×kC and kC×nR slivers, respectively.

If we further partition kC into smaller increments of a new parameter kR, on

the order of mR and nR, then we will end up with only matrix blocks of very

small size. As in [85], we can partition the scatter vectors into very small

blocks of size mR, nR, and kR as well and use optimized algorithms in the

packing kernels (i.e., packing process in Section 2.1.5) and micro-kernel when
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the scatter values for the current block are regularly spaced (i.e., strided). The

regular strides for each {m,n, k}R-sized block of {r, c}scatT (mR for rscatA

and rscatC, nR for cscatB and cscatC, kR for cscatA and rscatB), or zero if

no regular stride exists, are collected in a row/column block scatter vector

{r, c}bsT of length d Ni

{m,n,k}R e and similarly for the other row/column scatter

vectors. With these block scatter vectors, we can then utilize efficient SIMD

vector load/store instructions for the stride-one index, or vector gather/scatter

fetch instructions for the stride-n index, in a favorable memory access pattern.

In Figure 5.1b, assuming mR = nR = kR = 4, rbsC = (1, 1), and

cbsC = (4, 4), since the regular strides for each four elements of rscatC and

cscatC are 1 and 4, respectively.

5.2 Strassen’s algorithm for tensor contraction

The operations summarized in Figure 4.1 are all special cases of

M = (X + δY)(V + εW); D+= γ0M; E+= γ1M; (5.2)

for appropriately chosen γ0, γ1, δ, ε ∈ {−1, 0, 1}. Here, X and Y are submatri-

ces of A, V and W are submatrices of B, and D and E are submatrices of C.

As in Chapter 3, this scheme can be extended to multiple levels of Strassen.

Instead of partitioning the tensor A into subtensors X and Y and so

on for B and C, we partition the matrix representations A, B, and C (block

scatter matrix view of A, B, C) as in the matrix implementation of Strassen.

Figure 5.1 provides an example to illustrate the partition mechanism. Block
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scatter matrix layouts for these submatrices may be trivially obtained by par-

titioning the scatter and block scatter vectors of the entire matrices along the

relevant dimensions. Once imbued with the appropriate layouts, these subma-

trices may then be used in the BLIS-based Strassen of Chapter 3 along with

modifications the packing kernels and micro-kernel as in [85].

In fusing these two methodologies, we need to further address the con-

sideration of multiple block scatter vectors as required when packing and ex-

ecuting the micro-kernel. Methods for dealing with this issue are described

in Section 5.3.1. The advantage of using matrix partitions (which is enabled

by the block scatter layout) instead of tensor partitions is primarily that only

the product of the lengths of each index bundle, {NIm , NJn , NPk
}, must be

considered when partitioning, and not the lengths of individual tensor dimen-

sions. For example, Strassen may be applied to any tensor contraction where

at least one dimension in each bundle is even in our approach, whereas the

last dimension (or rather, the dimension with the longest stride) should be

even when using subtensors.2 Additionally, when applying techniques such as

zero-padding or dynamical peeling [59, 117] in order to address edge cases, the

overhead is magnified for subtensor-based algorithms because the padding or

peeling applies to only a single tensor dimension; in our algorithm padding or

peeling may be applied based on the length of the entire index bundle, which

is necessarily longer and therefore incurs less overhead.

2A dimension other than the last could also be chosen for partitioning, but the spatial
locality of the partitioning would be destroyed.
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5.3 Implementations

We now detail the modifications to the block scatter matrix-based pack-

ing kernel and micro-kernel as described in [85] for Strassen. We focus on

the double precision arithmetic and data.

5.3.1 Packing

When packing submatrices for Strassen using Equation (5.2), multi-

ple scatter and block scatter vectors must be considered. In our implemen-

tation, the block scatter vector entries for the corresponding blocks in both

input submatrices (or all submatrices for L-level Strassen) are examined. If

all entries are non-zero, then the constant stride is used in packing the cur-

rent block.3 Otherwise, the scatter vectors are used when packing the current

block, even though one or more of the input submatrix blocks may in fact

have a regular stride. In future work, we plan to exploit these cases for further

performance improvements.

5.3.2 Micro-kernel

As in Chapter 3, we use assembly-coded micro-kernels that include the

update to several submatrices of C from registers. In order to use this efficient

update, all block scatter vector entries for the relevant submatrix blocks of

C must be non-zero. Unlike in the packing kernel implementation, the case

3Note that when non-zero, the block scatter vector entries for different submatrices will
always be equal.
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where only one or more of the submatrix blocks is regular stride would be more

difficult to take advantage of, as the micro-kernel would have to be modified

to flexibly omit or redirect individual submatrix updates.

5.3.3 Variations

We implement three variations of Strassen for tensor contraction on

the theme illustrated in Figure 3.2, extending Chapter 3.

• Naive Strassen: A classical implementation with temporary buffers.

Submatrices of matrix representations of A and B (A and B) are ex-

plicitly copied and stored as regular submatrices. Intermediate subma-

trices M are explicitly stored and then accumulated into submatrices of

matrix representation of C (C). We store the M submatrices as regu-

lar, densely-stored matrices, and handle their accumulation onto block

scatter matrix layout submatrices of C. Thus, the Naive Strassen

algorithm for tensor contraction is extremely similar to a ttdt-based

Strassen algorithm (see Section 5.6), except that the tensors are not

required to be partitioned into regular subtensors.

• AB Strassen: The packing routines incorporate the summation of sub-

matrices of matrix representations of A and B with implicit tensor-to-

matrix transformation into the packing buffers (see Section 5.3.1), but

explicit temporary buffers for matrices M are used.

• ABC Strassen: AB Strassen, but with a specialized micro-kernel (see
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Section 5.3.2) that incorporates additions of M to multiple submatrices

of matrix representation of C with implicit matrix-to-tensor transfor-

mation. Thus, the ABC Strassen algorithm for tensor contraction

requires no additional temporary buffers beyond the workspace already

incorporated in conventional gemm implementations.

5.4 Performance model

In Chapter 3, a performance model was proposed to predict the execu-

tion time T for variations of Strassen for matrices. In this section, we ex-

tend that performance model to estimate the execution time T of ABC, AB,

and Naive variations of L-level Strassen for TC and the high-performance

non-Strassen TC routine we build on (see Section 5.1; using TBLIS imple-

mentation [85, 84] introduced in Section 5.5; denoted as tblis henceforth).

Due to the high dimensionality of tensors and enormous types and combina-

tions of permutations (transpositions) in TC, it is impractical to exhaustively

search for every tensor shape and tensor problem size to find the best variation

using empirical performance timings. Performance modeling helps us to bet-

ter understand the memory footprint and computation of different Strassen

implementations for TC and at least reduce the search space to pick the right

implementation. In our new model, besides input problem size, block sizes,

and the hardware parameters such as the peak GFLOPS and bandwidth, T

also depends on the shape of the tensors and the extra permutations in the

packing routines and in the micro-kernel. In [55] we showed that a similar
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τa Time (in seconds) of one arithmetic (floating point) operation.

τb
(Bandwidth) Amortized time (in seconds) of 8 Bytes contiguous

data movement from slow main memory to fast cache.

ρa Penalty factor for arithmetic operation effciency.

ρb Penalty factor for bandwidth.

λ Prefetching efficiency.

T Total execution time (in seconds).

Ta Time for arithmetic operations (in seconds).

Tm Time for memory operations (in seconds).

T×a Ta for (sub)tensor contractions.

T
A+
a , T

B+
a , T

C+
a Ta for extra (sub)tensor addtions/permutations.

T
A×
m , T

B×
m Tm for reading (sub)tensors in packing routines (Figure 3.3).

T
C×
m Tm for reading and writing (sub)tensors in micro-kernel (Figure 3.3).

T
A+
m , T

B+
m , T

C+
m

Tm for reading or writing (sub)tensors, related to the temporary

buffer as part of Naive Strassen and AB Strassen.

WX
a /W

X
m Coefficient for the corresponding TX

a /T
X
m .

Figure 5.2: Notation table for performance model.

1© Effective GFLOPS = 2 ·NIm ·NJn ·NPk
/T · 10−9

2© T = Ta + Tm

3© Ta = W×
a · T×a +WA+

a · TA+
a +WB+

a · TB+a +W C+
a · T C+a

4© Tm = WA×
m · TA×m +WB×

m · TB×m +W C×
m · T C×m

+WA+
m · TA+

m +WB+
m · TB+m +W C+

m · T C+m
5© τa = 1/(ρa · Peak GFLOPS)

6© τb = 8/(ρb · Bandwidth)

Figure 5.3: Equations for computing the execution time T and Effective
GFLOPS in our performance model.

model is capable of predicting the best-performing fast matrix multiplication

algorithms from a large set of candidates in most circumstances. The same

predictive power should be applicable to tensor contractions as well, over a

wide range of tensor shapes and sizes.
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type τ tblis L-level

T×a - τa 2NImNJnNPk
2
NIm

M̃L

NJn

ÑL

NPk

K̃L

TA+
a - τa - 2

NIm

M̃L

NPk

K̃L

TB+a - τa - 2
NPk

K̃L

NJn

ÑL

T C+a - τa - 2
NIm

M̃L

NJn

ÑL

TA×m r τb NImNPk
dNJn

nc
e NIm

M̃L

NPk

K̃L
dNJn/ÑL

nc
e

TB×m r τb NJnNPk

NJn

ÑL

NPk

K̃L

T C×m r/w τb 2λNImNJnd
NPk

kc
e 2λ

NIm

M̃L

NJn

ÑL
dNPk

/K̃L

kc
e

TA+
m r/w τb NImNPk

NIm

M̃L

NPk

K̃L

TB+m r/w τb NJnNPk

NJn

ÑL

NPk

K̃L

T C+m r/w τb NImNJn
NIm

M̃L

NJn

ÑL

Figure 5.4: Various components of arithmetic and memory operations for tb-
lis TC and various implementations of Strassen TC. The time shown in the
first column for tblis TC and L-level Strassen can be computed separately
by multiplying the parameter in τ column with the arithmetic/memory oper-
ation number in the corresponding entries. Here NIm =

∏
i∈Im Ni = Ni0 · . . . ·

Nim−1 , NJn =
∏

j∈Jn Nj = Nj0 · . . . ·Njn−1 , NPk
=
∏

p∈Pk
Np = Np0 · . . . ·Npk−1

.

Assumption

Similar to Chapter 3, we assume two layers of memory hierarchy: slow

main memory and fast caches.4 For write operations, the lazy write-back policy

is enforced such that the time for writing into fast caches can be hidden. For

4The latency from multiple levels of cache for modern processors is hidden by hardware
prefetching. Two layers of memory are good enough for modeling performance of regular
applications such as gemm.
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tblis
1-level 2-level

ABC AB Naive ABC AB Naive

W×
a 1 7 7 7 49 49 49

WA+
a - 5 5 5 95 95 95

WB+
a - 5 5 5 95 95 95

W C+
a - 12 12 12 144 144 144

WA×
m 1 12 12 7 194 194 49

WB×
m 1 12 12 7 194 194 49

W C×
m 1 12 7 7 144 49 49

WA+
m - - - 19 - - 293

WB+
m - - - 19 - - 293

W C+
m - - 36 36 - 432 432

Figure 5.5: Coefficient WX
a /WX

m mapping table for computing TXa /TXm in the
performance model.

read operations, the latency for accessing the slow main memory is counted,

while the latency for accessing caches can be ignored.5

Notations

We summarize our notation in Figure 5.2. The total execution time,

T , can be decomposed into a sum of arithmetic time Ta and memory time Tm

( 2© in Figure 5.3).

5Either because it can be overlapped with computation or because it can be amortized
over sufficient computations.
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Arithmetic operations

As shown in 3©, Ta includes (sub)tensor contraction (T×a ) and (sub)tensor

additions/permutations (TA+
a , TB+a , T C+a ). The corresponding coefficients WX

a

for tblis TC and L-level various Strassen TC are enumerated in Figure 5.5.

For example, one-level Strassen TC has coefficients W×
a = 7, WA+

a = 5,

WB+
a = 5, and WC+

a = 12, because it involves 7 submatrix multiplications,

5 additions with subtensors of A, 5 additions with subtensors of B, and 12

additions with subtensors of C. Note that TXa is calculated by multiplying the

unit time τa with the arithmetic operation number in Figure 5.4. We com-

pute τa through 5©. The penalty factor ρa ∈ (0, 1] is introduced, due to the

extra computations involved in {r, c}scatT and {r, c}bsT , and the slow micro-

kernel invocation when the corresponding entries in rbsC or cbsC are 0 (see

Section 5.3.2; non-regular stride access).

Memory operations

Based on the above assumptions, Tm can be broken down into three

parts ( 4© in Figure 5.3):

• updating the temporary buffer that are parts of Naive Strassen and AB

Strassen (W T+
m · T T+m );

• memory packing shown in Figures 2.1 and 3.2 (WA×
m · TA×m , WB×

m · TB×m );

• updating the submatrices of C shown in Figures 2.1 and 3.2 (W C×
m · T C×m ).
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The coefficients WX
m are tabulated in Figure 5.5. TXm is a function of block sizes

{mC , kC , nC} in Figures 2.1 and 3.2, and the bundle lengths { NIm/2
L, NJn/2

L,

NPk
/2L } because the memory operation can repeat multiple times according

to which loop they reside in. Figure 5.4 characterizes each memory operation

term by its read/write type and the amount of memory in units of 64-bit double

precision elements. In order to get TXm , the memory operation number needs to

be multiplied by the bandwidth τb. We compute τb through 6©. We penalize the

effect of permutations without stride-one index accesss6 by setting ρb = 0.7.

A similar parameter is introduced in [112] for regular non-Strassen TC.

Because of the software prefetching effects, T C×m = 2λ
NIm

M̃L

NJn

ÑL
dNPk

/K̃L

kc
eτb has

an extra parameter λ ∈ (0.5, 1], which denotes the prefetching efficiency. T C×m

is a ceiling function proportional to NPk
, since rank-k updates for accumulating

submatrices of C recur dNPk
/K̃L

kc
e times in fourth loop (Figures 2.1 and 3.2).

Discussion

We can estimate the run time performance of various implementations,

based on the performance model presented in Figures 5.3, 5.4 and 5.5. Here

we define Effective GFLOPS ( 1© in Figure 5.3) for TC as the metric to com-

pare the performance of various Strassen TC and tblis TC. The theoretical

peak GFLOPS and bandwidth information are given in Section 5.5. In Fig-

ure 5.6, we demonstrate the modeled and actual performance for a wide range

6See Section 5.3.1; the corresponding entries in neither rbsT or cbsT are 1, i.e., using
scatter/gather operation, or indirect memory addressing with (5.1).

92



1 2 3 4 5 6·103
10

15

20

25
28.36

32
TBLIS

1 2 3 4 5 6·103

1-level ABC

1 2 3 4 5 6·103

1-level AB

1 2 3 4 5 6·103

1-level Naive

1 2 3 4 5 6·103

2-level ABC

1 2 3 4 5 6·103

2-level AB

1 2 3 4 5 6·103

2-level Naive

(a) m=k=n; x-axis for all figures in this row is ÑIm = ÑPk
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(c) k=1024, m=n vary; x-axis for all figures in this row is ÑIm = ÑJn .

Figure 5.6: Modeled performance (solid line) and actual performance (dots) of various implementations
for synthetic data on single core. y-axis for all figures is Effective GFLOPS (2 ·NIm ·NJn ·NPk

/time).
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(c) k=1024, m=n vary; x-axis for all figures in this row is ÑIm = ÑJn .

Figure 5.7: Actual performance (dots) of various implementations for synthetic data on one socket. y-axis
for all figures is Effective GFLOPS (2 ·NIm ·NJn ·NPk

/time).
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TC shapes

NRMSE ( % )

tblis
1-level 2-level

ABC AB Naive ABC AB Naive

m=k=n 5.26 4.27 3.23 3.49 7.82 5.64 8.65

m=n=14400, k varies 4.88 3.95 5.31 4.81 7.17 5.68 4.57

k=1024, m=n vary 4.55 4.64 5.39 5.23 9.08 7.65 7.26

Figure 5.8: Normalized root-mean-square error (NRMSE) between the actual
and modeled performance for synthetic data on single core. NRMSE is de-
fined as the root of mean square error normalized by the mean value of the
measurements, which shows the model prediction accuracy.

of synthetic tensor sizes and shapes: m=k=n; m=n=14400, k varies; k=1024,

m=n vary. How we generate synthetic data is detailed in Section 5.5.1. In

Figure 5.8, we quantitatively show the model prediction accuracy.

• The model can predict the relative performance for various implementations

within 10% error bound.

• For m=k=n (Figure 5.6a), the ABC Strassen implementations outperform

tblis, when NIm , NJn , NPk
are as small as 2kC , nearly 500, while Naive

Strassen cannot beat tblis until the problem size is larger than 2000.

• The “m=n=14400, k varies” graphs (Figure 5.6b) shows that when NPk

is small, ABC Strassen performs best; when NPk
is large, AB Strassen

performs better. The coefficients WX
m in Figure 5.5 help to illustrate the rea-

sons quantitatively. Two-level AB Strassen can achieve over 30% speedup

compared with TBLIS.
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• According to the model, when NPk
is equal to appropriate multiple of kC

(NPk
= 2L · kC for L-level), ABC Strassen achieves the best performance.

We will leverage this observation in our distributed memory experiment.

5.5 Performance experiments

We perform our experimental evaluations for synthetic data and real-

world benchmarks on a single node and on a distributed memory architecture.

The implementations are written in C++, utilizing AVX assembly, based on the

open source TBLIS framework [84]. We compare against TBLIS’s tensor con-

traction routine (marked as tblis) as well as the TTT routine from the MAT-

LAB Tensor Toolbox [4] (linked with Intel MKL [61], marked as ttt) for single

node and the tensor contraction routine from the Cyclops Tensor Framework

[110] (also linked with Intel MKL, marked with ctf) for distributed memory.

We measure the CPU performance results on the Maverick system at

the Texas Advanced Computing Center (TACC). Each node of that system

consists of a dual-socket (10 cores/socket) Intel Xeon E5-2680 v2 (Ivy Bridge)

processor with 256 GB memory (peak bandwidth: 59.7 GB/s with four chan-

nels) and a three-level cache (32 KB L1 data; 256 KB L2; 25.6 MB L3). The

stable CPU clockrate is 3.54 GHz when a single core is utilized (28.32 GFLOPS

peak, marked in the graphs) and 3.10 GHz when all 10 cores are in use (24.8

GFLOPS/core peak). We disable hyper-threading explicitly and set thread

affinity with KMP AFFINITY=compact which also ensures the computation and

the memory allocation all reside on the same socket.
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The cache blocking parameters, mC = 96, nC = 4096, kC = 256, and

the register block sizes, mR = 8, nR = 4, are consistent with parameters used

for the standard BLIS dgemm implementation for this architecture. We use

the default value of kR = 4 as defined in TBLIS. This makes the size of the

packing buffer Ãi 192 KB and B̃p 8192 KB, which then fits the L2 cache

and the L3 cache, respectively. Parallelization is implemented mirroring that

described in [108], but with the number of threads assigned to each of the loops

in Figures 2.1 and 3.2 automatically determined by the TBLIS framework.

5.5.1 Single node experiments

We report the experimental results on single node for the synthetic

tensor contraction, real-world benchmark, and shape dependence.

Synthetic tensor contractions

To evaluate the overall performance of various Strassen TC compar-

ing against tblis TC for different tensor problem sizes, shapes, and permuta-

tions, we randomly generate TC test cases with 2-D to 6-D randomly permuted

tensors as operands and test all these implementations for each synthetic test

case, as shown in Figures 5.6 and 5.7. We choose step size 256 to sample

uniformly {NIm , NJn , NPk
} for various tensor bundle lengths: square: m=k=n;

rank-NPk
: m=n=14400, k varies; fixed-NPk

: k=1024, m=n vary. For each

bundle length {NIm , NJn , NPk
}, we randomly generate three {Im, Jn, Pk} 1-D,

2-D, or 3-D bundles, such that the product of each index length is close to
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{NIm , NJn , NPk
}. The order of {Im, Jn, Pk} is then randomly permuted.

The generated bundle lengths may not exactly match the original sam-

pled bundle lengths. When we plot the actual performance of these synthetic

test cases, we set effective bundle lengths ÑIm = ÑJn = ÑPk
= (NIm · NJn ·

NPk
)1/3 for the square bundle lengths; ÑPk

= NIm ·NJn ·NPk
/(16000 · 16000)

for rank-NPk
bundle lengths; and ÑIm = ÑJn = (NIm · NJn · NPk

/1024)1/2 for

fixed-NPk
bundle lengths.

For the square and rank-NPk
tensor shapes on one core, tblis is rapidly

outpaced by ABC Strassen, with a crossover point of about 500 ≈ 2 · kC .

ABC Strassen is then shortly overtaken by AB Strassen and then by

two-level AB Strassen. As predicted by the performance model, the AB

Strassen implementation is best for very large problem sizes due to repeated

updates to C in the ABC Strassen algorithm. The Naive Strassen imple-

mentations are never the best in these experiments, although they may become

more efficient than AB Strassen for extremely large, square problems. These

trends are repeated in the 10-core experiments, although the crossover points

are moved to larger tensor sizes.

For the fixed-NPk
shapes, total performance is lower for AB Strassen

and Naive Strassen with scalability for the algorithms being especially im-

pacted by the relatively smaller NIm and NJn sizes. For these shapes ABC

Strassen is always the fastest method above the crossover point with standard

tblis.
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The actual performance data matches the predicted performance very

well, with some variation due to the randomization of the tensor lengths and

permutations. Using these performance models, it may be possible to ana-

lytically decide on which algorithm to apply for a given tensor contraction to

achieve the highest performance, allowing an automated and seamless inclu-

sion of Strassen into a TBLIS-like tensor framework.

Real-world benchmark

In Figure 5.9, we measure the performance of various implementations

for a subset of tensor contractions from the Tensor Contraction Benchmark

[111] on a single core and one socket. We present representative use cases

where NPk
is nearly equal to or larger than 2kC (512), for which Strassen

can show performance benefits, as illustrated in Section 5.4. The right three

test cases represent various regularly blocked tensor contractions from coupled

cluster with single and double excitations (CCSD) [103, 47, 102], a workhorse

quantum chemistry computational method. The fourth case from the right

illustrates the performance of tblis and Strassen TC for a pure matrix

case. Comparing this case and the CCSD contractions highlights some of the

performance issues that exist in the current implementation of the packing

and matrix-to-block scatter matrix copy kernels (see Section 5.3.1 for details).

On one core, all Strassen implementations improve on tblis for these right

four cases, and in parallel one-level Strassen implementations give a speedup

as well, exceeding ttt performance especially in the case of AB Strassen.
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Figure 5.9: Performance for representative user cases of benchmark from [112].
TC is identified by the index string, with the tensor index bundle of each tensor
in the order C-A-B, e.g., Cabcd+= AaebfBdfce is denoted as abcd-aebf -dfce. Top:
performance on single core. Bottom: performance on one socket.
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The gap between tblis and ttt for these contractions is due to ttt’s use

of Intel’s MKL library, which is more highly optimized than the BLIS/TBLIS

framework.

The left two benchmarks are again quantum chemistry applications us-

ing 3-D tensors that arise in density-fitting (DF) calculations [127, 34]. These

contractions are also structurally equivalent to certain contractions from the

coupled cluster with perturbative triples (CCSD(T)) method [96], where the

occupied (see Section 5.5.2) indices have been sliced. These cases show the im-

provement of tblis over ttt as noted in [85] but do not show a speedup from

Strassen except for one-level ABC Strassen on one core. Our Strassen

implementation performs the submatrix multiplications sequentially, with only

parallelization of each submatrix multiplication step. A more comprehensive

parallelization scheme, for example, using task-based parallelism [9], may show

better performance. Additionally, since the DF/CCSD(T) contractions are

highly “non-square,” an alternate fast matrix multiplication algorithm [9, 55]

may perform better.

Shape-dependence experiments

The performance of the “particle-particle ladder” tensor contraction

from CCSD, Zabij+= Wabef · Tefij, is reported for a range of tensor shapes

in Figure 5.10. In these experiments, the length of the virtual dimensions

{a, b, e, f} is varied with respect to the length of the occupied dimensions {i, j}

such that the total number of FLOPs is roughly similarly to a 16000× 16000
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matrix multiplication, and the ratio Na : Ni is used as a proxy for tensor shape.

A ratio of 1:1 would reflect an extremely poor quality of basis set for the overall

calculation but is common when the calculation employs regular blocking. The

other end of the scale, with a ratio of ∼ 5 : 1, would then correspond to

uneven blocking. This type of blocking allows for better load balancing and

lower overhead when Na and Ni are very unequal in the overall calculation.

The performance of tblis and all of the one-level Strassen algorithms

shows essentially no performance degradation across the entire range tested.

The two-level Strassen algorithms show some performance degradation at

larger ratios but still show improvement over tblis. Eventually, all Strassen

algorithms will cross over and perform worse than tblis, as evidenced by the

left two contractions in Figure 5.9 (these correspond to a ratio of about 22).

However, the good performance of Strassen out to reasonably large ratios

shows that it could be beneficial in both regular blocking and uneven blocking

scenarios.

5.5.2 Distributed memory experiments

We demonstrate how to use the Strassen TC implementations to

accelerate a distributed memory implementation of 4-D tensor contraction

that exemplifies the two-particle “ring” terms from CCSD. In our tests we set

the length of virtual indices {a, b, e} to 10× that of occupied indices {i, j,m},

which is a ratio commonly encountered in quantum chemistry calculations

using popular basis sets such as 6-311++G** [69] and cc-pVTZ [35]. The
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problem sizes tested here correspond to calculations on systems with 80, 112,

160, 192, and 224 electrons (i.e., Ni = Nj = Nm ∈ {40, 56, 80, 96, 112} and

Na = Nb = Ne = 10 · Ni). We use the contraction Zabij := WbmejTaeim as a

demonstration example to show the performance benefit.

We implement a SUMMA-like [120] algorithm for 4-D tensor contrac-

tion with MPI, similar to the distributed memory implementation in Sec-

tion 3.3.3. Initially the tensors W , T , and Z are distributed to a P ×P mesh

of MPI processes using a 2-D block distribution over the a, b, and e dimen-

sions, with the i, j, and m dimensions stored locally (i.e., not distributed).

After slicing W and T along the e dimension, the contraction is broken down

into a sequence of K contractions of tensor slice pairs,

Z :=
(
We;0 · · · We;K−1

) Te;0
...

Te;K−1


such that the e index length for each tensor slice pair {We;p, Te;p} is N ′e =

Ne/K. For each tensor slice pair, 0 ≤ p < K, We;p is broadcast within rows

of the mesh, and Te;p is broadcast within columns of the mesh. Then a local

tensor contration for the received tensor slice pair is performed to update the

local block. Here tblis TC and various Strassen TC are used as a drop-in

replacement for this local tensor contraction.

We perform the distributed memory experiment on the same machine

as the single node experiment. The dual-socket processor has 10 cores on each

socket. We run one MPI process for each socket and leverage all 10 cores in a
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socket with thread parallelism for all implementations. Figure 5.11 reports the

weak scalability performance result on up to 640 cores (32 nodes, 64 sockets).

In our experiments on P × P mesh of sockets (MPI processes), the

lengths of virtual indices are set to equal Na = Nb = Ne ≈ 400
√
P and

the lengths of occupied indices are set to equal Ni = Nj = Nm ≈ 40
√
P ,

which make NIm = NJn = NPk
≈ 16000 ·P . This guarantees the local memory

buffer allocated to Z,W , T is constant. Our experiments verify that the above

SUMMA-like algorithm is weakly scalable on this constant local memory setup,

regardless of which local TC implementation we use. The local e index length

N ′e is chosen close to N ′e = 1024/Nm (i.e., N ′e ∈ {25, 18, 12, 10, 9}) such that

the local TC computations are performed with NPk
= N ′e · Nm ≈ 4 · kC . The

tensor slice pairs in the local TC computations matches the shape when ABC

Strassen achieves the best performance. Therefore, the one-level and two-

level ABC Strassen implementations outperform all other implementations.

We also tested the Cyclops Tensor Framework (CTF) [110], which also

uses a SUMMA or nested SUMMA algorithm but with possibly different block

sizes and tensor distributions, as well as using the ttdt algorithm for local

tensor contractions. We show it here as a reference for state-of-the-art perfor-

mance.

5.6 Related work on tensor contraction

To the best of our knowledge, this work represents the first implemen-

tation of Strassen’s algorithm for tensor contraction.
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For tensor contraction, recent work on high-performance tensor contrac-

tion [85, 112] serves as the motivation and basis for our present work, while

other research has focused on algorithms using tensor slicing [29, 94, 75, 83]

or on improving the efficiency of the so-called ttdt algorithm for tensor con-

traction [46, 45, 82, 113], where input tensors A and B are Transposed (per-

muted) and then used in a standard gemm algorithm, with the output then

being Transposed and accumulated onto the tensor C. ttdt could be used

to construct a Strassen algorithm for TC by transposing subtensors into

submatrices and vice versa and using a matrix implementation of Strassen

instead of gemm. However, we showed that this algorithm is essentially the

same as our Naive Strassen algorithm (see Section 5.3.3), which is often less

efficient than the other algorithms that we have implemented.

The gett algorithm [112] is a high-performance tensor contraction

implementation similar in many ways to the BLIS-based implementation by

Matthews [85]. As in our current implementation, formation of linear combi-

nations of input subtensors of A and B and output to multiple subtensors of

C could be fused with the internal tensor transposition and micro-kernel steps

of gett. However, the implementation would be restricted to regular subten-

sors rather than more general submatrices (see Section 5.2), which could have

possible negative performance implications (e.g., false sharing).
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5.7 Summary

We have presented what we believe to be the first work to demonstrate

how to leverage Strassen’s algorithm for tensor contraction, and have shown

practical performance speedup on single core, multi-core, and distributed mem-

ory implementations. Using a block scatter matrix layout enables us to par-

tition the matrix view of the tensor, instead of the tensor itself, with au-

tomatic (implicit) tensor-to-matrix transformation, and the flexibility to fa-

cilitate Strassen’s 2-D matrix partition to multi-dimensional tensor spaces.

Fusing the matrix summation that must be performed for Strassen and the

transposition that must be conducted for tensor contraction with the pack-

ing and micro-kernel operations inside high-performance implementation of

gemm avoids extra workspace requirements and reduces the cost of additional

memory movement. We provided a performance model which can predict the

speedup of the resulting family of algorithms for different tensor shapes, sizes,

and permutations, with enough accuracy to reduce the search space to pick

the right implementation. We evaluated our families of implementations for

various tensor sizes and shapes on synthetic and real-world datasets, both

observing significant speedups comparing to the baseline (tblis) and naive

implementations (Naive Strassen), particularly for smaller problem sizes

(NIm , NJn , NPk
≈ 2kC , 4kC), and irregular shape (NPk

is much smaller com-

paring to NIm , NJn). Together, this work demonstrates Strassen’s algorithm

can be applied for tensor contraction with practical performance benefit.
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Chapter 6

A Practical Strassen’s Algorithm on GPUs

In the previous chapters, we explored how to develop practical imple-

mentations of Strassen, extensions to other Strassen-like FMM algorithms,

and extensions to higher-dimensional tensor contraction, all targeting CPUs.

In this chapter, we show how similar techniques extend the practical Strassen

approach to GPUs. Unlike CPUs, GPUs are designed as parallel, throughput-

oriented computing engines. We will show that the high-performance imple-

mentation of matrix multiplication on GPUs requires a somewhat different

philosophy from that on CPUs.

Several challenges must be overcome for a practical implementation of

Strassen on GPUs. First, the GPU architecture and programming model are

different from their counterparts for a CPU. In order to achieve high perfor-

mance, a practical implementation of Strassen needs to leverage the memory

hierarchy and thread hierarchy (Section 6.1.1) of a GPU. Second, a GPU has

a limited physical memory capacity. As previously discussed, conventional

Strassen implementations require some extra temporary memory for storing

intermediate submatrices, which limit the maximum problem size that can be

computed compared to gemm because of the GPU memory capacity. Third,
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a GPU is a highly parallel, multi-threaded, many-core processor. Strassen

needs to be parallelized in multiple ways to fully utilize the computational

horsepower of GPUs. However, there is a tension between reducing the mem-

ory and exploiting more parallelism with the conventional implementation of

Strassen. Finally, the ratio between the theoretical peak performance and

peak memory bandwidth of a GPU is even higher (less favorable) than that of

a CPU. Strassen has a lower ratio of arithmetic operations to memory opera-

tions compared to gemm, which means Strassen only becomes advantageous

when the problem sizes are sufficiently large. Thus, the practical implemen-

tation of Strassen needs to reduce the extra data movement to save the

bandwidth and outperform gemm for small or moderate problem sizes.

6.1 Background on Nvidia GPUs

In this section, the GPU programming model and the newest Nvidia

GPUs are briefly reviewed before describing the high-performance implemen-

tation of gemm on such GPUs.

6.1.1 GPU programming model

The CUDA programming environment [88] assumes that the CUDA

program (kernel) is executed on physically independent devices (GPUs) as

coprocessors to the host (CPU). Figure 6.1 shows the memory and thread

hierarchy on the GPU device.
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Figure 6.1: Memory and thread hierarchy in the CUDA programming envi-
ronment.
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Memory hierarchy

The memory hierarchy on the GPU device includes three levels: global

memory, shared memory, and register files. The latency decreases while the

bandwidth increases through the memory hierarchy from global memory to

registers.

Thread hierarchy

A thread is the smallest execution unit in a CUDA program. A thread

block is a group of threads that run on the same core and shares a partition

of resources such as shared memory. Thread blocks communicate through

barrier synchronization. Multiple blocks are combined to form a grid, which

corresponds to an active CUDA kernel on the device. At runtime, a thread

block is divided into a number of warps for execution on the cores. A warp is a

set of 32 threads to execute the same instructions while operating on different

data in lockstep.

6.1.2 Nvidia Volta GPUs

Recently, Nvidia released the Tesla V100 accelerator (V100) with Volta

GV100 GPUs to boost high-performance computing (HPC), artificial intelli-

gence (AI), and graphics applications [36]. It is reported that the incoming

pre-exascale systems, such as the Summit and Sierra supercomputers, will be

equipped with Nvidia Tesla V100 GPUs [89]. Therefore, we foresee the impor-

tance of improving the performance of V100 GPUs for the HPC community.
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The Tesla V100 GPU accelerator comprises 80 streaming multiproces-

sors (SMs). Each SM is partitioned into 4 processing blocks. Each processing

block consists of 2 Tensor Cores, 8 FP64 (double precision) cores, 16 FP32

(single precision) cores, and 16 INT32 cores, of which the last three are also

called CUDA cores. Each Tensor Core performs matrix multiplication and ac-

cumulation operations on small matrices with a size of 4× 4, achieving up to

64 floating point Fused-Multiply-Add (FMA) operations in one clock cycle. It

multiplies two FP16 (half precision) matrices of a size of 4×4 and adds to the

accumulation FP16 (half precision) or FP32 (single precision) matrices. The

tested Tesla V100 PCIe GPU accelerator has the base clock frequency 1.254

GHz and boost clock frequency 1.38 GHz. The theoretical peak performance

can reach 14.13 TFLOPS1 with single precision and 7.065 TFLOPS2 with dou-

ble precision, while Tensor Cores can deliver 113 TFLOPS3 for FP16/FP32

mixed precision. The tested Tesla V100 GPU is built using 16 GB HBM2

memory with 900 GB/s of bandwidth.

6.1.3 Matrix multiplication on GPUs

We review the high-performance implementation of matrix multiplica-

tion on Nvidia GPUs, based on Nvidia’s CUDA Templates for Linear Algebra

11 FMA/cycle × 2 FLOP/FMA × 1.38G (boost clock frequency) × 16 (# FP32 core)
× 4 (# processing block/SM) × 80 (# SM).

21 FMA/cycle × 2 FLOP/FMA × 1.38G (boost clock frequency) × 8 (# FP64 core) ×
4 (# processing block/SM) × 80 (# SM).

364 FMA/cycle × 2 FLOP/FMA × 1.38G (boost clock frequency) × 2 (# Tensor Core)
× 4 (# processing block/SM) × 80 (# SM).
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Subroutines (CUTLASS) [67, 86], a collection of CUDA C++ templates and

abstractions to perform high-performance gemm operations. CUTLASS in-

corporates strategies for hierarchical partition and data movement similar to

cuBLAS [87], the state-of-the-art implementation of the BLAS implementa-

tion on Nvidia GPU, and can reach more than 90% of cuBLAS performance on

V100. Without loss of generality, we will focus on single precision arithmetic

henceforth.

Blocking strategies

CUTLASS organizes the computation by partitioning the operands into

blocks in the different levels of the device, thread block, warp, and thread.

Figure 6.2 illustrates the gemm implementation in CUTLASS.

• Device level: blocking for the thread blocks and shared memory.

The three operand matrices, A, B, and C, are partitioned into mS × kS,

kS × nS, and mS × nS blocks. Each thread block computes an mS × nS

block of C by accumulating the results of matrix products of an mS × kS
block of A and a kS × nS block of B. Therefore, the mS × nS block of C,

the output of the thread block, is referred as the C Accumulator. Since the

C Accumulator is updated many times, it needs to be lifted into the fastest

memory in the SM: the register file. The global memory in which the parts

of C corresponding to the C Accumulator only needs to be updated once

after the C Accumulator has accumulated the results of all matrix products

along the k dimension. Furthermore, to improve data locality, blocks of A
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Figure 6.2: Illustration of the gemm implementation in CUTLASS [67]. CUT-
LASS partitions the operand matrices into blocks in the different levels of the
device, thread block, warp, and thread. Here we show block sizes typical
for the large sgemm: mS = 128, nS = 128, kS = 8; mW = 4 × mR = 32,
nW = 8× nR = 64; nR = 8, nR = 8.
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and B are “packed” (copied) from global memory into shared memory as

the A Tile and B Tile for data reuse, accessible by all threads in the same

thread block.

• Thread block level: blocking for the warps.

After the A Tile and B Tile are stored in shared memory, each individ-

ual warp computes a sequence of accumulated outer product by iteratively

loading an A Fragment (a column of the A Tile with height mW ) and a

B Fragment (a row of the B Tile with width nW ) from the corresponding

shared memory into register files along the k dimension and performing a

rank-1 update. Note that the C Accumulator is spatially partitioned across

all the warps within the same thread block, with each warp storing a non-

overlapping 2-D block in the register files.

• Warp level: blocking for the threads.

Each thread in a warp computes an mR×nR outer product with subvectors

of the A Fragment and subvectors of the B Fragment in a “strip-mining”

(cyclic) pattern. Each piece has a size of 4, because the largest granularity

of vector load is 128 bits (4 single precision floating point numbers), and this

helps to maximize the effective bandwidth. The total length of all pieces

for an individual thread in m dimension is mR, while the total length in n

dimension is nR. Since each warp has 32 threads (Section 6.1.1), CUTLASS

organizes the threads within the same warp in a 4× 8 or 8× 4 fashion such

that mW/mR = 4, nW/nR = 8, or mW/mR = 8, nW/nR = 4.
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Strategy mS nS kS mR nR mW/mR nW/nR

Small 16 16 16 2 2 4 8

Medium 32 32 8 4 4 4 8

Large 64 64 8 8 8 4 8

Tall 128 32 8 8 4 8 4

Wide 32 128 8 4 8 4 8

Huge 128 128 8 8 8 4 8

Figure 6.3: CUTLASS specifies six strategies of block sizes at each level in
Figure 6.2 for different matrix shapes and problem sizes.

• Thread level: executing on the CUDA cores.

Each thread issues a sequence of independent FMA instructions to the

CUDA cores and accumulates an mR × nR outer product.

Choices of block sizes

The block sizes at each level {mS, nS, kS,mR, nR,mW , nW} in Figure 6.2

are constrained by hardware parameters such as the register size on a SM, the

maximum thread number for a thread block, the shared memory size for a SM,

and the maximum register number per thread. To optimize the performance

of gemm on such a GPU, these block sizes also need to be chosen to match

the maximum bandwidth of the global memory and shared memory, and the

theoretical peak performance of the device. Towards this goal, CUTLASS

customizes six different strategies of block sizes for different matrix shapes

and problem sizes, as shown in Figure 6.3. We report the performance of

these different strategies for square matrices on V100 in Figure 6.4.
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Algorithm 1 gemm on GPUs with software pipelining.
//Register: fragA[2][mR], fragB [2][nR], nextA[mR], nextB [nR]
//Register: accumC [mR × nR]
//Shared memory: tileA[kS ×mS ], tileB [kS × nS ]
load one mS × kS of A into tileA[kS ][mS ]
load one kS × nS of B into tileB [kS ][nS ]

syncthreads()
load subvectors of first column in tileA into fragA[0][mR]
load subvectors of first row in tileB into fragB [0][nR]
for block k = 0 : kS : k do

prefetch one subcolumn of next mS × kS block of A into nextA[mR]
prefetch one subrow of next kS × nS block of B into nextB [nR]
for warp k = 0 : 1 : kS do

prefetch subvectors of next column in tileA into fragA[(warp k + 1)%2][mR]
prefetch subvectors of next row in tileB into fragB [(warp k + 1)%2][nR]
accumC [mR][nR] += fragA[warp k%2][mR]fragB [warp k%2][nR]

end for
store nextA[mR] into tileA[kS ][mS ]
store nextB [nR] into tileB [kS ][nS ]

syncthreads()
end for
update mS × nS block of C with accumC [mR][nR]

Software prefetching

As shown in Algorithm 1, to keep the SM busy, CUTLASS uses global

and local software prefetching to hide the data movement latency. The com-

putations on the CUDA cores are overlapped with the data preloading from

the global memory and from the shared memory. A synchronization after the

data is stored to the shared memory is required to avoid the race conditions

of read between warp for the next iteration.4

4CUTLASS also provides the option of double buffering on the thread block level to
enable concurrent reading for the current iteration and writing for the next iteration. It
eliminates the synchronization but also doubles the cost of the shared memory and the
number of registers to hold the global memory fetches. On the Tesla V100 GPUs, the
option of double buffering on the thread block level is disabled.
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M0 =(A0 + A3)(B0 +B3); C0+= M0;C3+= M0;
M1 =(A2 + A3)B0; C2+= M1;C3−= M1;
M2 =A0(B1 −B3); C1+= M2;C3+= M2;
M3 =A3(B2 −B0); C0+= M3;C2+= M3;
M4 =(A0 + A1)B3; C1+= M4;C0−= M4;
M5 =(A2 − A0)(B0 +B1); C3+= M5;
M6 =(A1 − A3)(B2 +B3); C0+= M6;

Figure 6.5: All operations for one-level Strassen. Duplicate of Figure 4.1 for
easy reference.

6.2 Strassen’s algorithm on Nvidia GPUs

Recall that the operations encountered in Figure 6.5 are all special cases

of

M = (X + δY )(V + εW ); D+= γ0M ; E+= γ1M ; (6.1)

for appropriately chosen γ0, γ1, δ, ε ∈ {−1, 0, 1}. Here, X and Y are submatri-

ces of A, V and W are submatrices of B, and D and E are submatrices of C.

As in Chapter 3, this scheme can be extended to multiple levels of Strassen.

We will modify the gemm implementation for GPUs illustrated in Fig-

ure 6.2 to accommodate the representative computation

M = (X + Y )(V +W );D+= M ;E+= M. (6.2)

As shown in Figure 6.6, the key insights are that we develop a special-

ized kernel for the representative operation (6.2) utilizing the GPU memory

hierarchy and thread hierarchy:

• The summation of matrices X + Y can be incorporated into the packed
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Figure 6.6: Specialized kernel that implements the representative computation
M = (X + Y )(V + W );D+ = M ;E+ = M of each row of computations
in Figure 6.5 based on Figure 6.2. X, Y are submatrices of A; V , W are
submatrices of B; D, E are submatrices of C; M is the intermediate matrix
product.
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A Tile during the packing process (Section 6.1.3), avoiding the extra

workspace requirement, and reducing the additional memory movement

since the A Tile is reused for the temporary matrix sum, which is held

in the shared memory.

• Similarly, the summation of matrices V + W can be also incorporated

into the packed B Tile during the packing process.

• After the C Accumulator has accumulated its result of (X +Y )(V +W )

along the k dimension, it can update the appropriate parts of D and

E in the global memory once. This optimization avoids the required

workspace for temporary intermediate matrices Mi and reduces the ad-

ditional memory movement since the C Accumulator is kept in the reg-

ister files: it is fetched from the global memory into the register once in

the beginning, and it is written to D and E only after its computation

completes.

6.3 Implementations

6.3.1 Exploiting more parallelism

A straightforward implementation of Strassen’s algorithm based on our

specialized kernel (Section 6.2) would invoke a sequence of kernels sequen-

tially (7 kernels for one level, 49 kernels for two levels). This approach has

already achieved the intra-kernel parallelism across the thread blocks, warps,

and threads, which is utilized in the gemm implementation on a GPU. How-
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ever, it is further possible to improve concurrency by exploiting more inter-

kernel parallelism. A careful observation of Figure 6.5 reveals that

• the ordering of these operations can be arbitrary;

• the dependencies between the kernels for these operations only occur for

the concurrent writes to different submatrices of C.

By invoking multiple independent kernels without write dependencies to dif-

ferent parts of C, we can achieve inter-kernel parallelism, which is especially

important for small problem sizes when there is limited intra-kernel parallelism

such that each kernel cannot saturate the workload for the GPU device and

for multi-level Strassen when the partitioned block size is small. We exploit

the inter-kernel parallelism in the following ways:

Multi-kernel streaming

CUDA programs can manage the concurrency across kernels through

streams [88], each of which is a sequence of commands that execute in order.

While the instructions within the same stream must be scheduled in sequen-

tial order, the commands from different streams may run concurrently out of

order. This helps to overlap computation with communication, as well as run

multiple kernels at the same time. To ensure every command in a particular

stream has finished execution, cudaDeviceSynchronize can be used to enforce

synchronization points.
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Stages Operation Stream
0 M1 =(A2 + A3)B0; C2+= M1;C3−= M1; 0

M4 =(A0 + A1)B3; C1+= M4;C0−= M4; 1
M5 =(A2 − A0)(B0 +B1); C3+= M5; 0
M6 =(A1 − A3)(B2 +B3); C0+= M6; 1

1 M2 =A0(B1 −B3); C1+= M2;C3+= M2; 0
M3 =A3(B2 −B0); C0+= M3;C2+= M3; 1

2 M0 =(A0 + A3)(B0 +B3); C0+= M0;C3+= M0; 0

Figure 6.7: Reordered operations based on Figure 4.1 with multi-kernel
streaming.

Figure 6.7 illustrates the multi-kernel streaming implementation with

the reordered operations based on Figure 6.5. We organize the kernels for

these operations into three stages with two streams. Synchronization of the

streams is imposed between the different stages to guarantee the correctness

of the operations because of the concurrent write dependencies to different

parts of C. The kernels for these operations in different streams within the

same stage can be interleaved or executed concurrently. We note that [72]

also leverage multi-kernel streaming to make use of concurrency across kernels

for the bottom level Strassen. However, it requires an additional workspace

of 15 extra submatrices, while our approach doesn’t require any additional

workspace due to our specialized kernels.

Element-wise atomic write to C

Since the dependencies across the kernels only exist during the concur-

rent write to different parts of C, we can “partially” remove the dependencies

and execute all operations fully concurrently in one stage with one operation
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per stream by replacing the post-processing step5 of submatrices of C with

element-wise atomic write operation through atomicAdd. We find that this

way will benefit small problem sizes. However, when the problem sizes be-

come larger, the performance drops because element-wise atomic operations

incur a greater overhead.

Atomic write to C with larger granularity

Each thread finally updates an mR× nR block of C, so it is possible to

switch the granularity of atomic write from 1 (element-wise) to mR×nR (block-

wise). We need to construct a device array for the purpose of a mutex/lock.

Each entry of the device array corresponds to an mR × nR block of C. Once

a thread completes the accumulation of the C Accumulator in the register, it

will first lock the corresponding mutex/lock entries of mR × nR block of D

and E (different submatrices of C) before updating D and E, and unlock the

corresponding mutex/lock entries after the updates finish. The locks can be

implemented with atomicCAS and atomicExch functions.

Reducing the multi-kernel launch overhead

With the multi-kernel streaming, we still need to launch seven kernels

for one-level Strassen. For small problem sizes, the overhead for launching

multiple kernels cannot be ignored. To further reduce the overhead for ker-

5The post-processing step involves loading each element of D and E in the global memory,
adding or subtracting corresponding element in Mi residing in the C Accumulator in the
register, and storing back to the original location of D and E in the global memory.
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nel launching and avoid the possible inefficiency caused by the CUDA stream

implementation, it is possible to just launch a kernel for all operations shown

in Figure 6.5 with a 3-D grid of thread blocks, while the gemm and special-

ized kernels in Figures 6.2 and 6.6 only require a 2-D grid. The additional

z dimension for the grid (blockIdx.z) corresponds to different operations in

Figure 6.5. The inter-kernel parallelism for multi-kernel streaming has thus

transformed into one extra dimensional concurrency inside the kernel. We

can utilize the atomic write with the granularity of either 1 or mR × nR to

guarantee the correctness of the result.

6.3.2 Reducing memory requirement

The conventional implementations of Strassen on GPUs based on the

functions provided by cuBLAS for matrix multiplication and matrix addition

(i.e., cublasSgemm, cublasSgeam) led to the “street wisdom” that there is a

trade-off between reducing the effective available memory and exploiting more

parallelism. More temporary workspace for intermediate result is traditionally

required to eliminate the dependency and increase the concurrency. With our

approach, however, we can achieve both reduced memory and more homo-

geneous parallelism, similar to data parallelism except the dependencies for

concurrent writes to different parts of C. We reuse the shared memory to

store the temporary sum and the register file to store the temporary matrix

product Mi (Section 6.2). The different operations in Figure 6.5 can be easily

parallelized with the help of multi-kernel streaming or a kernel with a 3-D grid
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(Section 6.3.1).

6.3.3 Handling the fringes

Traditionally, for matrices with odd dimensions, we need to handle

the remaining fringes before applying Strassen. There are some well-known

approaches such as padding (i.e., adding rows or columns with zeros to get

matrices of even dimensions) and peeling (i.e., deleting rows or columns to

obtain even dimensioned matrices) [59, 117] followed by post-processing. In

our approach, fringes can be internally handled by padding the A Tile and B

Tile with zeros, and aligning the mC × nC C Accumulator along the fringes.

This trick avoids the handling of the fringes with extra memory or com-

putations because the packing and accumulation processes always occur for

high-performance implementation of gemm on GPUs, and we reuse the same

buffers.

6.3.4 Adapting software prefetching

As illustrated in Algorithm 2, instead of prefetching one mS×kS block

of A and one kS × nS block of B, Strassen requires the preloading of two

mS×kS blocks of X and Y and two kS×nS blocks of V and W . The required

register number per thread has since doubled, but the required sizes of shared

memory and global memory remain the same.
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Algorithm 2 M = (X + Y )(V + W );D+ = M ;E+ = M on GPUs with
software prefetching
//Register: fragA[2][mR], fragB [2][nR]
//Register: next0A[mR], next1A[mR], next0B [nR], next1B [nR]
//Register: accumC [mR × nR]
//Shared memory: tileA[kS ×mS ], tileB [kS × nS ]
load the sum of one mS × kS of X and corresponding mS × kS of Y into tileA[kS ][mS ]
load the sum of one kS × nS of V and corresponding kS × nS of W into tileB [kS ][nS ]

syncthreads()
load subvectors of first column in tileA into fragA[0][mR]
load subvectors of first row in tileB into fragB [0][nR]
for block k = 0 : kS : k do

prefetch one subcolumn of next mS × kS block of X into next0A[mR]
prefetch one subcolumn of next mS × kS block of Y into next1A[mR]
prefetch one subrow of next kS × nS block of V into next0B [nR]
prefetch one subrow of next kS × nS block of W into next1B [nR]
for warp k = 0 : 1 : kS do

prefetch subvectors of next column in tileA into fragA[(warp k + 1)%2][mR]
prefetch subvectors of next row in tileB into fragB [(warp k + 1)%2][nR]
accumC [mR][nR] += fragA[warp k%2][mR]fragB [warp k%2][nR]

end for
store next0A[mR] + next1A[mR] into tileA[kS ][mS ]
store next0B [nR] + next1B [nR] into tileB [kS ][nS ]

syncthreads()
end for
update mS × nS block of D with accumC [mR][nR]
update mS × nS block of E with accumC [mR][nR]

6.4 Performance experiments

Experimental setup

We perform our experiments on a Tesla V100 PCIe accelerator which is

connected to an Intel Xeon Gold 6132 Skylake server. The Operating System

is CentOS Linux version 7.4.1708. We use CUDA Driver/Runtime Version

9.1/9.0 with CUDA Capability 7.0 and cuBLAS with version 9.0. The GNU

compiler version for compiling the host code is 6.4.0. The nvcc compiler flags

-O3 -Xptxas -v -std=c++11 -gencode arch=compute 70,code=sm 70 are
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used. As presented in Section 6.1.2, the tested Tesla V100 PCIe accelerator

has a theoretical peak performance of 14.13 TFLOPS with single precision.

Measurement

We report the single precision floating point results using square ma-

trices with the size of m = k = n for each dimension. To time the CUDA

execution of kernels running on the GPU, we use the CUDA events that have

a resolution of approximately half a microsecond. As before, we take Effective

TFLOPS as the main metric to compare the performance of various imple-

mentations.

Effective TFLOPS =
2 ·m · n · k

time (in seconds)
· 10−12. (6.3)

CUTLASS and our implementations of Strassen based on CUTLASS are

tested with different strategies of block sizes to select the highest performing

setup.

Result

Figure 6.8 reports the single precision floating point performance of

cuBLAS, CUTLASS, and various Strassen implementations on V100. The

1-level and 2-level reference implementations [72] are linked with cuBLAS 9.0,

with the operations in Strassen restructured to have only two temporary

matrices.

For the 2-level hybrid implementation, we use reference implementation

129



1 2 3 4 5 6 7 8 910 12 14 16 18 20

·103

2

4

6

8

10

12

14.13

16
17

m = k = n

E
ff

ec
ti

ve
T
F
L
O
P
S

CUTLASS cuBLAS

1 level, Ours 1 level, Reference

2 level,Hybrid 2 level, Reference

Figure 6.8: Performance of various Strassen implementations on V100 with
single precision. The theoretical peak for the machine is 14.13 TFLOPS. The 1-
level and 2-level reference implementations are from [72] (linked with cuBLAS
9.0). The 2-level hybrid implementation replaces the cublasSgemm function
in the 1-level reference implementation [72] with our 1-level Strassen imple-
mentation.
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in the top level, and our 1-level implementation in the bottom level.6

By comparing the performance of various implementations, we make

the following observations:

• For 1-level, our implementation of Strassen outperforms CUTLASS and

cuBLAS when the problem sizes m = k = n are as small as 3000. The

reference implementation cannot get the comparable performance with our

implementation until the problem sizes are larger than 10000.

• For 2-level, the reference implementation cannot beat the hybrid implemen-

tation until the problem size is larger than 15000.

• Our implementation has the same memory consumption as CUTLASS, while

the 1-level reference implementation consumes much more memory.

• Our 1-level Strassen implementation and 2-level hybrid implementation

achieve the best performance over the entire spectrum of problem sizes com-

pared to the reference implementation, with no or less additional memory

consumption.

6We also tried to extend the insights from Figure 6.6 to 2-level Strassen implementation.
However, it requires up to four times more registers per thread compared to gemm. Due
to the capacity of the register number per thread on GPUs, we cannot get a reasonable
performance.
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6.5 Summary

We have presented a practical implementation of Strassen’s algorithm

on GPUs, which outperforms the state-of-the-art implementation on small

problem sizes and consumes no additional memory compared to gemm. By

developing a specialized kernel, we utilized the GPU memory hierarchy and

thread hierarchy. By reusing the shared memory to store the temporary ma-

trix sum during the packing process and the register files to hold the tempo-

rary matrix product during the accumulation process, we avoided the extra

workspace requirement and reduced the additional memory movement. Be-

sides the intra-kernel parallelism across the thread blocks, warps, and threads

similar to gemm implementation on GPUs, we also exploited the inter-kernel

parallelism with multi-kernel streaming, atomic write with different granular-

ity, and launching a kernel with a 3-D grid to reduce the multi-kernel launch

overhead. The fringes can be handled internally during the packing and ac-

cumulation process. We also leveraged the software prefetching to hide the

latency of data movement across the memory hierarchy. Together, we achieved

both less memory and more parallelism with our customized kernels.
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Chapter 7

Conclusion

In this dissertation, we explored practical implementations of Strassen’s

algorithm and other Strassen-like fast matrix multiplication algorithms on

CPU and GPU architectures. The conventional implementations of these

Strassen and similar Strassen-like FMM algorithms led to the “street wis-

dom” that they are only practical for large, relatively square matrices, that

they require considerable workspace, and that they are difficult to achieve

thread-level parallelism. We dispelled these notions, demonstrating significant

benefits for small and non-square matrices, requiring no workspace beyond

what is already incorporated in high-performance implementations of matrix

multiplication, and achieving performance benefits on the Intel Xeon Phi pro-

cessor with 60 cores executing 240 threads and on the latest Volta GPU device

with over 14 TFLOPS theoretical peak performance for single precision. The

resulting families of algorithms can serve as a drop-in replacement for matrix

multiplication, which has numerous scientific applications. This study showed

that Strassen and Strassen-like fast matrix multiplication algorithms can be

incorporated into libraries for practical use.
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7.1 Results

In this dissertation, a number of novel contributions have been reported.

• Practical implementations of Strassen on various CPU architec-

tures. Key to the work is that the linear combinations of submatrices that

underlie Strassen can be incorporated in and composed with the prim-

itives of high-performance gemm implementations exposed by the BLAS-

like Library Instantiation Software (BLIS), which discloses the fundamental

building blocks below the BLAS interface that can be used to build the new

algorithms and fuse a sequence of BLAS-like operations to avoid repeated

memory movements that constitute overhead. Incorporating the matrix ad-

ditions that must be performed for Strassen into the inherent packing and

micro-kernel operations inside high-performance implementations of gemm

avoids extra workspace and reduces the cost of extra memory movement.

Adopting the same loop structures as high-performance gemm implemen-

tations allows parallelizations of Strassen with simple but efficient data

parallelization without the expenses of task parallelism. Our implementa-

tions demonstrated performance benefits over the conventional gemm on

a variety of architectures, such as single core, multi-core, many-core, and

distributed memory parallel CPU architectures.

• Code and model generation for the practical implementations of

Strassen-like FMM algorithms. We developed a code generator frame-

work which can automatically implement families of FMM algorithms. This
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code generator expresses the composition of multi-level FMM algorithms

as Kronecker products. It incorporates the matrix summations that must

be performed for FMM algorithms into the inherent packing and micro-

kernel operations inside gemm, avoiding extra workspace requirement and

reducing the overhead of memory movement. Importantly, it generates a

performance model that is accurate enough to guide the selection of a FMM

implementation as a function of problem size and shape, facilitating the cre-

ation of “poly-algorithms” that select the best algorithm for a problem size.

Without the requirement for exhaustive empirical search, our generated im-

plementations of various FMM algorithms outperformed the state-of-the-art

implementations, especially for smaller matrices and special matrix multi-

plication shapes such as rank-k updates.

• Generalization of practical implementations of Strassen for higher-

dimensional tensor contraction. This work presents the first efficient

implementation of Strassen’s algorithm for tensor contraction, a significant

problem with numerous applications. It describes how to extend Strassen’s

algorithm to tensor contraction without the explicit transposition of data

that inherently incurs significant memory movement and workspace over-

head; it provides a performance model for the cost of the resulting family

of algorithms; it details the practical implementation of these algorithms,

including how to exploit variants of the primitives that underlie BLIS and a

data layout to memory for the tensors; it demonstrates practical speedup on

modern single core and multi-core CPUs; it illustrates how the local use of
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the Strassen’s tensor contraction algorithm on each node improves perfor-

mance of a simple distributed memory tensor contraction. Together, these

results unlock a new frontier for the research and application of Strassen’s

algorithm.

• Practical implementations of Strassen on Nvidia GPUs. The GPU

architecture is different from a traditional CPU in a number of aspects:

a GPU has its own programming model; it has limited physical memory

size; it is designed as a parallel, throughput-oriented computing engine; it

has a higher ratio of the computation power to the memory bandwidth.

We overcame these challenges for a practical implementation of Strassen

on GPUs, which outperforms the state-of-the-art implementations on small

problem sizes and consumes the same memory compared to the conventional

gemm. We leveraged the GPU thread and memory hierarchy by designing

a dedicated kernel, reduced the additional memory consumption through

reusing the shared memory for the temporary matrix addition result and

the register files for the temporary matrix product in Strassen, and ex-

ploited the inter-kernel parallelism as well as the intra-kernel parallelism.

Finally, our specialized kernel for Strassen on GPUs can attain both more

parallelism and less memory consumption, compared to the state-of-the-art

result.
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7.2 Future work

There are several avenues of research for future work suggested by this

dissertation.

• Special structures of matrix multiplication and tensor contraction.

In this dissertation we target dense matrix multiplication and tensor con-

traction, which have numerous applications. However, the structure of the

matrix and tensor operands may be symmetric [63, 39, 21, 98], which yields

a number of new challenges, like more efficient storage or layout format.

How to explore those structure patterns and combine with Strassen and

similar Strassen-like FMM algorithms can be investigated.

• Other level-3 BLAS. K̊agström et al. [63] and Higham [49] demonstrated

that gemm and FMM can be the basis for level-3 BLAS. In [39, 124, 122], it

is discussed how the GotoBLAS algorithm and BLIS framework for gemm

can be extended to implement other level-3 BLAS (matrix-matrix opera-

tions). This sets the stage for a more thorough investigation of how the

various modifications of Strassen and Strassen-like FMM algorithms can

similarly be applied ot the other level-3 BLAS.

• Higher-level linear algebra functionality. Unique to our implementa-

tion of Strassen and FMM algorithms is the fact that it already attains

high performance for a rank-k update for a relatively small k. Many oper-

ations in libraries like LAPACK [2], ScaLAPACK [19], libflame [121, 43],
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PLAPACK [118], and Elemental [95], cast higher level linear algebra func-

tionality like LU (with pivoting), QR, and Cholesky factorization in terms

of rank-k updates. A natural question becomes how to accelerate these

important operations with the new Strassen or other FMM algorithms.

This takes the subject full circle in the sense that the original Strassen paper

actually discussed how LU factorization could be accelerated [115].

• Future hierarchical memory architectures. In Section 2.1.6, we briefly

reviewed the related work on implementing a family of algorithms on gen-

eral hierarchical memory architectures. Future computer architectures are

expected to have a lower ratio between the rate of data movement from the

main memory to the caches and the rate of computation, requiring alter-

native gemm algorithms, e.g., presented in [44, 106]. We intend to explore

how to extend these algorithms to Strassen and other Strassen-like FMM

algorithms with the goal of achieving good performance in a low bandwidth

scenario.

• Machine learning primitives. Building upon BLIS, fusing gemm with

other operations can benefit the performance of operations encountered in

machine learning such as the “K-Nearest Neighbor” computation [131]. The

idea is that many memory movements can be avoided by incorporating the

processing of the output of a gemm operation into the implementation, not

unlike how we incorproate the addition of submatrices into the packing of

those submatrices in our Strassen implementation. We plan to investigate
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whether such machine learning operations can be further accelerated by

incorporating Strassen or other FMM algorithms rather than classical

gemm.

• Mixed precision. More levels of Strassen and Strassen-like FMM al-

gorithms may lose precision due to numerical instability issues. It may

be possible to combine the proposed techniques with Extended and Mixed

Precision BLAS [78] to get higher speedup and maintain precision.

• Task parallelism. Task parallelism and various parallel schemes are pro-

posed in the recent literature [26, 9]. In [9], the authors of that paper discuss

alternative ways for achieving thread-level parallelism: parallelism with the

gemm calls for the individual multiplications with submatrices; task-level

parallelism where each multiplication with submatrices is viewed as a task;

and a combination of these techniques. In Chapter 6, we exploited such

inter-kernel and the intra-kernel parallelism. We need to pursue how our

techniques compare to these and how to combine these with our advances

in Strassen and Strassen-like FMM algorithms. It may also be possible to

utilize our performance model to help better task scheduling.

• Searching for new FMM algorithms with the performance model.

Finding new FMM algorithms by searching the coefficient matrix JU, V,W K

is an NP-hard problem [68]. It may be possible to prune branches with the

performance model as the cost function during the search process.
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• Communication lower bound. The asymptotic communication lower

bound for Strassen and the conventional matrix multiplication has been

characterized, in [62, 7, 101, 10]. We would like to investigate how to ap-

ply our performance model to constrain the coefficients of the cubic and

quadratic terms and get more precise lower bound for specific architectures.

• Pedagogical outreach. We have created a pedagogical “sandbox” we

call BLISlab [57, 52], which teaches relative novices to the science of high-

performance computing how to optimize gemm within a simplified BLIS-like

framework in courses [119, 93]. We intend to extend this exercise to also

guide the participants through the optimizations that underlie Strassen

and the Strassen-like FMM implementations.

• Distributed memory. Practical distributed memory parallel algorithms

for gemm are invariably variations on the Scalable University Matrix Mul-

tiplication Algorithm (SUMMA) [120, 99]. In Chapter 3, we discuss how a

SUMMA algorithm can benefit from a call to Strassen for the node-level

matrix-matrix multiplication. In contrast, in [42], SUMMA was extended

to incorporate Strassen, with Strassen applied at the top level, paral-

lelism within each multiplication with submatrices, and a call to a standard

dgemm for the local call. On the one hand, the performance of our approach

that incorporates Strassen in the local gemm needs to be compared to

these implementations. On the other hand, it may be possible to add a

local Strassen gemm into these parallel implementations. Alternatively,
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the required packing may be incorporated into the communication of the

data.

In short: there are many variations of the Strassen and similar Strassen-like

FMM algorithm themes yet to be explored.
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Appendix A

Table of Acronyms

AI Artificial Intelligence.

APA Arbitrary Precision Approximate.

ATLAS Automatically Tuned Linear Algebra Software.

BLAS Basic Linear Algebra Subprogram.

BLIS BLAS-like Library Instantiation Software.

CCSD Coupled Cluster with Single and Double excitations.

CUTLASS CUDA Templates for Linear Algebra Subroutines.

CTF Cyclops Tensor Framework.

DLA Dense Linear Algebra.

DF Density-fitting.

DRAM Dynamic Random Access Memory.

FMA Fused Multiply Add.

FMM Fast Matrix Multiplication.

gemm General Matrix Multiplication.

GFLOPS Giga (109) FLoating-point Operations Per Second.

HPC High-Performance Computing.

MOMMS Multilevel Optimized Matrix-matrix Multiplication Sandbox.

NRMSE Normalized Root-Mean-Square Error.

PHiPAC Portable High Performance ANSI C.

SM Streaming Multiprocessor.

SUMMA Scalable Universal Matrix Multiplication Algorithm.

TACC Texas Advanced Computing Center.

TC Tensor Contraction.

TFLOPS Tera (1012) FLoating-point Operations Per Second.
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Appendix B

Table of Symbols

α, β, ... Scalar variables.

a, b, c, ... Vector variables.

A,B,C, ... Matrix variables.

A,B, C, ... Tensor variables.

A,B,C, ... Matrix views of tensors.

m,n, k Matrix dimensions.

mC , nC , kC Cache blocking parameters for GotoBLAS.

mR, nR Register blocking parameters for GotoBLAS or CUTLASS.

mS, nS, kS Shared memory blocking parameters for CUTLASS.

mW , nW Warp blocking parameters for CUTLASS.

Im, Jn, Pk Index bundles. See Section 5.1.1.

〈m̃, k̃, ñ〉 Partitions for FMM algorithms. See Section 4.1.1.

JU, V,W K The set of coefficients that determine the 〈m̃, k̃, ñ〉 algorithm.

rscat, cscat Scatter vectors for the matrix view of tensors.

rbs, cbs Block scatter vectors for the matrix view of tensors.

T Time.
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Appendix C

〈3, 2, 3〉 FMM algorithm

In this appendix, we present an example of a FMM algorithm with

〈3, 2, 3〉 partition, originally from [6, 8, 9].

Consider C := C + AB, where C, A, and B are m × n, m × k, and

k × n matrices, respectively. Assuming that m and n can be evenly divided

by 3, and k is even, this 〈3, 2, 3〉 FMM algorithm has the partition

C=

 C0 C1 C2

C3 C4 C5

C6 C7 C8

, A=

 A0 A1

A2 A3

A4 A5

 , B=

(
B0 B1 B2

B3 B4 B5

)
, (C.1)

where Ai, Bj, and Cp are the m
3
× k

2
, k

2
× n

3
, and m

3
× n

3
submatrices of A,

B and C, respectively, with a single index in the row major order. It can be

verified that the operations in Figure C.1 also compute C := C+AB, requiring

only 15 multiplications with submatrices instead of 3× 2× 3 = 18 submatrix

multiplication. Theoretically this algorithm can reach (18 − 15)/15 = 20%

speedup, if we ignore the lower-order term of submatrix additions.

The following JU, V,W K specifies the set of coefficients that determine

this one-level 〈3, 2, 3〉 FMM algorithm, where U , V , and W are 6× 15, 6× 15,

and 9× 15 matrices. Note that the entries uir, vjr, and wpr in the rth column

of JU, V,W K, specify the cofficients for the operation in rth row in Figure C.1,
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and i, j, p are mapped to the submatrix index in (C.1). For example, In the

first column of JU, V,W K, −1, 1, 1 of U are corresponding to A1, A3, and A5;

1, 1 of V are corresponding to B4 and B5; and −1 of W are corresponding to

C2. These coefficients are mapped to the operation in the first row:

M0 = (−A1 + A3 + A5)(B4 +B5);C2−= M0;

U=


0 −1 −1 0 −1 0 0 0 −1 −1 0 0 0 0 −1
−1 0 0 0 1 0 0 0 0 1 0 0 1 0 1

0 1 1 1 1 1 −1 0 1 0 0 0 0 1 1
1 0 0 0 0 0 1 1 0 0 0 0 0 0 −1
0 0 0 −1 0 0 1 0 1 0 0 1 0 −1 0
1 1 0 1 0 0 −1 0 0 0 1 −1 0 0 0

,

V =


0 0 0 0 1 1 0 0 0 −1 0 0 1 1 0
0 0 −1 0 1 0 0 0 1 −1 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0 1 1 0 −1 0
0 0 0 −1 0 0 1 1 0 0 0 0 1 1 0
1 −1 −1 0 1 0 0 0 0 0 0 0 1 0 1
1 0 0 1 0 0 −1 0 0 0 1 0 0 −1 0

,

W =



0 0 −1 0 −1 1 0 0 0 0 0 0 1 0 0
0 0 1 0 1 −1 0 0 0 1 0 0 0 0 0
−1 −1 0 1 0 0 −1 1 0 0 1 1 0 0 −1

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 1 0 0 0 0 −1
0 0 0 1 0 0 −1 1 0 0 0 1 0 0 0
0 0 0 −1 0 1 0 0 0 0 1 0 0 −1 0
0 −1 1 0 0 0 0 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0


.

Other FMM algorithms with different partitions found in the literature

and tested in our experiment in Chapter 4 are listed in Figure 4.2 and more

details can be found in [53].
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M0 = (−A1 + A3 + A5)(B4 +B5); C2−= M0;
M1 = (−A0 + A2 + A5)(B0 −B5); C2−= M1; C7−= M1;
M2 = (−A0 + A2)(−B1 −B4); C0−= M2; C1+= M2; C7+= M2;
M3 = (A2 − A4 + A5)(B2 −B3 +B5); C2+= M3; C5+= M3; C6−= M3;
M4 = (−A0 + A1 + A2)(B0 +B1 +B4); C0−= M4; C1+= M4; C4+= M4;
M5 = (A2)(B0); C0+= M5; C1−= M5; C3+= M5; C4−= M5; C6+= M5;
M6 = (−A2 + A3 + A4 − A5)(B3 −B5); C2−= M6; C5−= M6;
M7 = (A3)(B3); C2+= M7; C3+= M7; C5+= M7;
M8 = (−A0 + A2 + A4)(B1 +B2); C7+= M8;
M9 = (−A0 + A1)(−B0 −B1); C1+= M9; C4+= M9;
M10 = (A5)(B2 +B5); C2+= M10;C6+= M10;C8+= M10;
M11 = (A4 − A5)(B2); C2+= M11;C5+= M11;C7−= M11;C8+= M11;
M12 = (A1)(B0 +B1 +B3 +B4); C0+= M12;
M13 = (A2 − A4)(B0 −B2 +B3 −B5); C6−= M13;
M14 = (−A0 + A1 + A2 − A3)(B5); C2−= M14;C4−= M14;

Figure C.1: All operations for an example of one-level 〈3, 2, 3〉 FMM algorithm.
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Appendix D

Derivation of Kronecker Product

In this appendix, we derive that the coefficient matrices of a multi-level

FMM algorithm can be represented as the Kronecker product of the coefficient

matrices of each level.

Theorem D.1. (2-level) For a 2-level FMM algorithm, assuming the set of

coefficients that determine the first level 〈m̃, k̃, ñ〉 FMM algorithm is JU, V,W K,

the set of coefficients that determine the second level 〈m̃′, k̃′, ñ′〉 FMM algo-

rithm is JU ′, V ′,W ′K, and the submatrices of A, B and C are indexed with

a 2-level recursive block storage indexing, then the set of coefficients of this

two-level FMM algorithm is JU ⊗ U ′, V ⊗ V ′,W ⊗W ′K.

Proof. Following our representations in Section 4.1, the first level 〈m̃, k̃, ñ〉

FMM algorithm with the set of coefficients JU, V,W K can be rewritten as,

for r = 0, ..., R− 1,

Mr :=

(
m̃k̃−1∑
i=0

uirAi

)
×
(
k̃ñ−1∑
j=0

vjrBj

)
;

Cp+= wprMr (p = 0, ..., m̃ñ− 1)

(D.1)

where (×) is a matrix multiplication that can be done recursively, uir, vjr, and

wpr are entries of a (m̃k̃)×R matrix U , a (k̃ñ)×R matrix V , and a (m̃ñ)×R
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matrix W , respectively. Note that here Ai, Bj, and Cp are the submatrices of

A, B and C, with a single index in the row major order.

Similarly, the second level 〈m̃′, k̃′, ñ′〉 FMM algorithm with the set of

coefficients JU ′, V ′,W ′K can be rewritten as,

for r′ = 0, ..., R′ − 1,

M ′
r :=

(
m̃′k̃′−1∑
i′=0

u′i′r′A
′
i

)
×
(
k̃′ñ′−1∑
j′=0

vj′r′B
′
j

)
;

C ′p+= w′p′r′M
′
r (p′ = 0, ..., m̃′ñ′ − 1)

(D.2)

where u′i′r′ , v
′
j′r′ , and w′p′r′ are entries of a (m̃′k̃′)×R′ matrix U ′, a (k̃′ñ′)×R′

matrix V ′, and a (m̃′ñ′)× R′ matrix W ′, respectively. Note that here A′i, B
′
j,

and C ′p are the submatrices of Ai, Bj and Cp of the first level, with a single

index in the row major order.

By passing (D.2) into (D.1), the two-level FMM algorithm composed

of the above first level and second level FMM algorithms can be written as,

for r = 0, ..., R− 1,

for r′ = 0, ..., R′ − 1,

Mr·R′+r′ :=

(
m̃k̃−1∑
i=0

uir

(
m̃′k̃′−1∑
i′=0

u′i′r′A(i,i′)

))

×
(
k̃ñ−1∑
j=0

vjr

(
k̃′ñ′−1∑
j′=0

v′j′r′B(j,j′)

))
;

C(p,p′)+= wpr
(
w′p′r′Mr·R′+r′

)
(p = 0, ..., m̃ñ− 1; p′ = 0, ..., m̃′ñ′ − 1)

(D.3)

where A(i,i′), B(j,j′), and C(p,p′) are the i′th subblock in the second level par-

tition of ith submatrix in the first level partition of A, the j′th subblock in
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the second level partition of jth submatrix in the first level partition of B, the

p′th subblock in the second level partition of pth submatrix in the first level

partition of C, respectively.

Through interchanging the order of summation, the two-level FMM

algorithm can be rewritten as, (D.3) can be rewritten as,

for r = 0, ..., R− 1,

for r′ = 0, ..., R′ − 1,

Mr·R′+r′ :=

(
m̃k̃−1∑
i=0

m̃′k̃′−1∑
i′=0

(uiru
′
i′r′)A(i,i′)

)

×
(
k̃ñ−1∑
j=0

k̃′ñ′−1∑
j′=0

(
vjrv

′
j′r′
)
B(j,j′)

)
;

C(p,p′)+=
(
wprw

′
p′r′
)
Mr·R′+r′

(p = 0, ..., m̃ñ− 1; p′ = 0, ..., m̃′ñ′ − 1).

(D.4)

Since the submatrices of A, B and C are indexed with a 2-level recursive block

storage indexing, A(i,i′), B(j,j′), and C(p,p′) can be indexed with a single index

in the two-level recursive blocking block storage indexing, that is, A
i·m̃′k̃′+i′ ,

Bj·k̃′ñ′+j′ , Cp·m̃′ñ′+p′ , respectively. Therefore, (D.4) can be rewritten as,

for r = 0, ..., R− 1,

for r′ = 0, ..., R′ − 1,

Mr·R′+r′ :=

(
m̃k̃−1∑
i=0

m̃′k̃′−1∑
i′=0

(uiru
′
i′r′)Ai·m̃′k̃′+i′

)

×
(
k̃ñ−1∑
j=0

k̃′ñ′−1∑
j′=0

(
vjrv

′
j′r′
)
Bj·k̃′ñ′+j′

)
;

C
p·m̃′ñ′+p′+=

(
wprw

′
p′r′
)
Mr·R′+r′

(p = 0, ..., m̃ñ− 1; p′ = 0, ..., m̃′ñ′ − 1).

(D.5)
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Let’s use a%b to denote the remainder of a/b, and assume that r∗ = r ·R′+r′,

i∗ = i · m̃k̃ + i′, j∗ = j · k̃ñ + j′, and p∗ = p · m̃ñ + p′. Then, r = br∗/R′c,

r′ = r∗%R′; i =
⌊
i∗/(m̃′k̃′)

⌋
, i′ = i∗%(m̃′k̃′); j =

⌊
j∗/(k̃′ñ′)

⌋
, j′ = j∗%(k̃′ñ′);

and p =
⌊
p∗/(m̃′ñ′)

⌋
, p′ = p∗%(m̃′ñ′). By replacing r, r′, i, i′, j, j′, p, and p′

with r∗, i∗, j∗, and p∗, and merging the summation, (D.5) can be rewritten as,

for r∗ = 0, ..., R ·R′ − 1,

Mr∗ :=

(
m̃k̃·m̃′k̃′−1∑

i∗=0

(
ubi∗/(m̃′k̃′)c,br∗/R′cu

′
i∗%(m̃′k̃′),r∗%R′

)
Ai∗

)

×
(
k̃ñ·k̃′ñ′−1∑
j∗=0

(
vbj∗/(k̃′ñ′)c,br∗/R′cv′j∗%(k̃′ñ′),r∗%R′

)
Bj∗

)
;

Cp∗+=
(
wbp∗/(m̃′ñ′)c,br∗/R′cw

′
p∗%(m̃′ñ′),r∗%R′

)
Mr∗

(p∗ = 0, ..., m̃ñ · m̃′ñ′ − 1).

(D.6)

If X and Y are m × n and p × q matrices with (i, j) entries denoted

by xi,j and yi,j, respectively, then the Kronecker product [41] X ⊗ Y is the

mp× nq matrix given by

X ⊗ Y =

 x0,0Y · · · x0,n−1Y
...

. . .
...

xm−1,0Y · · · xm−1,n−1Y

 .

Thus, entry (X ⊗ Y )p·r+v,q·s+w = xr,syv,w, or, (X ⊗ Y )i,j = xbi/pc,bj/qcyi%p,j%q.

With this definition of Kronecker product, (D.6) can be rewritten as,

151



for r∗ = 0, ..., R ·R′ − 1,

Mr∗ :=

(
m̃k̃·m̃′k̃′−1∑

i∗=0

(U ⊗ U ′)i∗,r∗ Ai∗
)

×
(
k̃ñ·k̃′ñ′−1∑
j∗=0

(V ⊗ V ′)j∗,r∗ Bj∗

)
;

Cp∗+= (W ⊗W ′)p∗,r∗Mr∗

(p∗ = 0, ..., m̃ñ · m̃′ñ′ − 1).

(D.7)

Thus, assume each submatrix of A, B, and C is partitioned with another level

of 〈m̃′, k̃′, ñ′〉 FMM algorithm with the coefficients JU ′, V ′,W ′K, and Ai, Bj, Cp

are the submatrices of A, B and C, with a single index in two-level recursive

block storage indexing. Then we have proved (D.7), that is, C := C+AB can

be computed by,

for r = 0, ..., R ·R′ − 1,

Mr :=

(
m̃k̃·m̃′k̃′−1∑

i=0

(U ⊗ U ′)i,rAi
)
×
(
k̃ñ·k̃′ñ′−1∑

j=0

(V ⊗ V ′)j,rBj

)
;

Cp+= (W ⊗W ′)p,rMr(p = 0, ..., m̃ñ · m̃′ñ′ − 1).
(D.8)

Theorem D.2. (L-level generalization) Assuming that the set of coef-

ficients that determine the l-level 〈m̃l, k̃l, ñl〉 algorithm is JUl, Vl,WlK (l =

0, 1, ..., L−1;L ≥ 1), and the submatrices of A, B and C are indexed with

a L-level recursive block storage indexing, then the set of coefficients of this

L-level FMM algorithm is J
⊗L−1

l=0 Ul,
⊗L−1

l=0 Vl,
⊗L−1

l=0 WlK.
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Proof. This can be derived by mathematical induction.

Base Step. For L = 1, following our representations in Section 4.1, since 1-

level recrusive block storage indexing is the same as row major order indexing,

the set of coefficients of 1-level 〈m̃0, k̃0, ñ0〉 algorithm is JU0, V0,W0K.

Inductive Hypothesis. Assume that for some L = K (K ≥ 1), the set of

coefficients of this L-level FMM algorithm is J
⊗K−1

l=0 Ul,
⊗K−1

l=0 Vl,
⊗K−1

l=0 WlK.

we want to show that the proposition holds for L = K + 1.

Inductive Step. For L = K + 1, the (K + 1)-level recursive block storage

indexing can be viewed as the K-level recursive block storage indexing and a

following 1-level block storage indexing on top of the K-level partition. the

(K + 1)-level FMM algorithm can also be viewed as the K-level FMM algo-

rithm and a following 1-level 〈m̃K , k̃K , ñK〉 algorithm with the set of coeffi-

cients JUK , VK ,WKK. By Theorem D.1 and the inductive hypothesis, we have

that the set of coefficients of this L-level FMM algorithm is J
(⊗K−1

l=0 Ul

)
⊗

UK ,
(⊗K−1

l=0 Vl

)
⊗ VK ,

(⊗K−1
l=0 Wl

)
⊗WKK, or, J

⊗K
l=0 Ul,

⊗K
l=0 Vl,

⊗K
l=0 WlK.

We showed that L = 1 satisfies the property and that if some K (K ≥ 1)

satisfies it, then K + 1 satisfies it as well. This shows, by the induction

principle, this theorem holds for any L ≥ 1, so this completes the proof.

The formula for defining the L-level FMM algorithm is given by,
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for r = 0, ...,
∏L−1

l=0 Rl − 1,

Mr :=


L−1∏
l=0

m̃lk̃l−1∑
i=0

(
L−1⊗
l=0

Ul)i,rAi

×


L−1∏
l=0

k̃lñl−1∑
j=0

(
L−1⊗
l=0

Vl)j,rBj

;

Cp+= (
L−1⊗
l=0

Wl)p,rMr(p = 0, ...,
∏L−1

l=0 m̃lñl − 1)

(D.9)

where Ai, Bj, Cp are the submatrices of A, B and C, with a single index in

L-level recursive block storage indexing.
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Appendix E

Numerical Stability

In this appendix, we analyze the theoretical and empirical numerical

stability result of Strassen and similar Strassen-like FMM algorithms, and

discuss some possible algorithmic techniques to improving the numerical ac-

curacy.

E.1 Numerical stability for Strassen’s algorithm

E.1.1 Theoretical bound

There once was a widespread viewpoint that Strassen is severely nu-

merically unstable. However, this viewpoint is unfounded [16]. The fact is

that Strassen does meet a somewhat weaker error bound than the classical

matrix multiplication algorithm (Section 2.1) [50, 28, 6]:

• Strassen only meets a norm-wise bound, while the classical matrix

multiplication algorithm further meets an element-wise bound.

• The constant term in the norm-wise bound for Strassen is larger than

that for the classical algorithm.

As illustrated in [50], The forward norm-wise error bound for L-level
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Figure E.1: Empirical stability experiment for Strassen. The actual max-
norm error and mean error vs. theoretical error bound for square matrices in
double precision and single precision.
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Strassen is

‖C − Ĉ‖ ≤ (12L((
n

2L
)2 +

5n

2L
)− 5n)‖A‖‖B‖u +O(u2) (E.1)

where M is an n × n matrix, ‖M‖ := maxi,j|Mi,j| for M ∈ {A,B,C}, and u

is the unit roundoff. For single precision, u = 2−24 ≈ 5.96× 10−8; For double

precision, u = 2−53 ≈ 1.11× 10−16.

As a comparison, the forward norm-wise error bound for the classical

algorithm given in [50] is

‖C − Ĉ‖ ≤ n‖A‖‖B‖u +O(u2).

E.1.2 Empirical experiment

The theoretical bound given in [50] is too loose. In Figure E.1, we show

the measured max-norm absolute error (maxi,j|Ci,j− Ĉi,j|) and mean absolute

error ( 1
n2 Σi,j|Ci,j−Ĉi,j|) compared to the theoretical bound for square matrices

with Strassen in Chapter 3 in double precision and single precision, where

each entry is uniformly randomly generated from [−1, 1].

E.2 Numerical stability for FMM algorithms

E.2.1 Theoretical bound

Strassen-like FMM algorithms are also norm-wise numerical stable. A

number of papers [13, 50, 28, 6] reveal that the norm-wise stability bounds for

L-level FMM algorithms can be present as

‖C − Ĉ‖ ≤ falg(n, L)‖A‖‖B‖u +O(u2) (E.2)
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Figure E.2: Empirical stability experiment for 1-level and 2-level FMM algorithms. The actual max-norm
error for square matrices in double precision and single precision.
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where falg is a polynomial function of n depending on the algorithm.

E.2.2 Empirical experiment

In Figure E.2, we present the measured max-norm absolute error (‖C−

Ĉ‖) for square matrices with 1-level and 2-level FMM algorithms in Chapter 4

in double precision and single precision, where each entry is uniformly ran-

domly generated from [−1, 1].

E.3 Improving the numerical accuracy

The numerical accuracy of FMM algorithms depends on not only the

properties of the algorithms, but also the intrinsic structures of the input

matrices. There are several strategies for improving the error guarantees.

• Reducing the number of levels of FMM algorithms. The numerical error

decreases as fewer levels of FMM algorithms are employed, as observed

in Figure E.1 and Figure E.2. However, fewer levels may mean less

performance improvement with FMM algorithms. There is a trade-off

between the levels of FMM algorithms and the performance.

• Selecting the FMM algorithm with better numerical stability. This may

involve an exhaustive search and more details can be found in [6].

• Diagonal scaling by preprocessing A and B and postprocessing C [28, 6]

in order to improve the intrisic structure of the input matrices, that is,

to decrease ‖A‖ and ‖B‖ in Equation (E.1) and Equation (E.2). The
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basic idea follows the equation,

C = DAD
−1
A ADD−1BD−1

B DB = DA((D−1
A AD)(D−1BD−1

B ))DB

for any nonsingular diagonal scaling matrices, DA, DB, and D. With the

associativity property of matrix multiplication, these diagonal scaling

matrices can be first applied to the input matrices A and B as a prepro-

cessing step, and later applied to the matric product as a postprocessing

step, which involve an extra O(N2) cost. The scaling technique can be

incorporated in the the packing and micro-kernel routines for CPUs, and

in the packing and accumulating process for GPUs.

Finally, we note that the numerical accuracy loss caused by using

Strassen or similar Strassen-like FMM algorithms instead of the classical

matrix multiplication is likely no worse than the other computations encoun-

tered in a larger application.
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C. J. Kenneth Tan, editors, Computational Science — ICCS 2001, pages

51–60, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[45] M. Hanrath and A. Engels-Putzka. An efficient matrix-matrix multipli-

cation based antisymmetric tensor contraction engine for general order

coupled cluster. J. Chem. Phys., 133(6):064108, 2010.

[46] A. Hartono, Q. Lu, T. Henretty, S. Krishnamoorthy, H. Zhang, G. Baum-

gartner, D. E. Bernholdt, M. Nooijen, R. Pitzer, J. Ramanujam, and

167

https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2
https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2


P. Sadayappan. Performance optimization of tensor contraction expres-

sions for many-body methods in quantum chemistry. J. Phys. Chem.

A, 113(45):12715–12723, 2009.

[47] Trygve Helgaker, Poul Jorgensen, and Jeppe Olsen. Molecular Electronic-

Structure Theory. Wiley, Chichester, NY, first edition, February 2013.

[48] John L. Hennessy and David A. Patterson. Computer Architecture,

Fifth Edition: A Quantitative Approach. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 5th edition, 2011.

[49] Nicholas J. Higham. Exploiting fast matrix multiplication within the

level 3 BLAS. ACM Trans. Math. Softw., 16(4):352–368, December

1990.

[50] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.

SIAM, Philadelphia, PA, USA, second edition, 2002.

[51] C-H Huang, Jeremy R Johnson, and Robert W Johnson. A tensor prod-

uct formulation of Strassen’s matrix multiplication algorithm. Applied

Mathematics Letters, 3(3):67–71, 1990.

[52] Jianyu Huang. BLISlab. GitHub Repository, 2016. https://gith

ub.com/flame/blislab.

[53] Jianyu Huang. Generating families of practical fast matrix multiplica-

tion algorithms. GitHub Repository, 2017. https://github.com/fla

me/fmm-gen.

168

https://github.com/flame/blislab
https://github.com/flame/blislab
https://github.com/flame/fmm-gen
https://github.com/flame/fmm-gen


[54] Jianyu Huang, Devin A. Matthews, and Robert A. van de Geijn. Strassen’s

algorithm for tensor contraction. SIAM Journal on Scientific Comput-

ing, 40(3):C305–C326, 2018.

[55] Jianyu Huang, Leslie Rice, Devin A. Matthews, and Robert A. van de

Geijn. Generating families of practical fast matrix multiplication algo-

rithms. In 31th IEEE International Parallel and Distributed Processing

Symposium (IPDPS 2017), pages 656–667, May 2017.

[56] Jianyu Huang, Tyler M. Smith, Greg M. Henry, and Robert A. van de

Geijn. Strassen’s algorithm reloaded. In Proceedings of the Interna-

tional Conference for High Performance Computing, Networking, Stor-

age and Analysis (SC 16), pages 59:1–59:12. IEEE Press, 2016.

[57] Jianyu Huang and Robert A. van de Geijn. BLISlab: A sandbox for

optimizing GEMM. FLAME Working Note #80, TR-16-13, The Uni-

versity of Texas at Austin, Department of Computer Science, 2016.

[58] W. Huang, G. Santhanaraman, H. W. Jin, Q. Gao, and D. K. Panda.

Design of high performance MVAPICH2: MPI2 over infiniband. In

Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE In-

ternational Symposium on, volume 1, pages 43–48, May 2006.

[59] Steven Huss-Lederman, Elaine M. Jacobson, Anna Tsao, Thomas Turn-

bull, and Jeremy R. Johnson. Implementation of Strassen’s algorithm

for matrix multiplication. In Proceedings of the 1996 ACM/IEEE Con-

ference on Supercomputing, SC 96, Washington, DC, USA, 1996. IEEE.

169



[60] IBM ESSL. Available Online, 2018. https://www.ibm.com/support/

knowledgecenter/en/SSFHY8/essl welcome.html.

[61] Intel MKL. Available Online, 2018. https://software.intel.com/en-

us/intel-mkl.

[62] Dror Irony, Sivan Toledo, and Alexander Tiskin. Communication lower

bounds for distributed-memory matrix multiplication. Journal of Par-

allel and Distributed Computing, 64(9):1017–1026, 2004.

[63] Bo K̊agström, Per Ling, and Charles van Loan. GEMM-based level 3

BLAS: High-performance model implementations and performance eval-

uation benchmark. ACM Trans. Math. Softw., 24(3):268–302, Septem-

ber 1998.

[64] Igor Kaporin. The aggregation and cancellation techniques as a practical

tool for faster matrix multiplication. Theoretical Computer Science,

315(2-3):469–510, 2004.

[65] Elaye Karstadt and Oded Schwartz. Matrix multiplication, a little

faster. In Proceedings of the 29th Annual ACM Symposium on Paral-

lelism in Algorithms and Architectures, SPAA 17, New York, NY, USA,

2017. ACM.

[66] Jeremy Kepner and John Gilbert. Graph algorithms in the language of

linear algebra. SIAM, 2011.

170

https://www.ibm.com/support/knowledgecenter/en/SSFHY8/essl_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSFHY8/essl_welcome.html
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl


[67] Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. CUT-

LASS: Fast linear algebra in CUDA C++. Nvidia Developer Blog, Dec

2017. https://devblogs.nvidia.com/cutlass-linear-algebra-cud

a.

[68] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd

Ed.): Seminumerical Algorithms. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1997.

[69] R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. Selfconsistent

molecular orbital methods. xx. a basis set for correlated wave functions.

J. Chem. Phys., 72:650–654, 1980.

[70] Bharat Kumar, C-H Huang, P Sadayappan, and Rodney W Johnson. A

tensor product formulation of Strassen’s matrix multiplication algorithm

with memory reduction. Scientific Programming, 4(4):275–289, 1995.

[71] Julian Laderman, Victor Pan, and Xuan-He Sha. On practical algo-

rithms for accelerated matrix multiplication. Linear Algebra and Its

Applications, 162:557–588, 1992.

[72] P. W. Lai, H. Arafat, V. Elango, and P. Sadayappan. Accelerating

Strassen-Winograd’s matrix multiplication algorithm on GPUs. In

20th Annual International Conference on High Performance Comput-

ing, pages 139–148, Dec 2013.

171

https://devblogs.nvidia.com/cutlass-linear-algebra-cuda
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda


[73] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic

linear algebra subprograms for Fortran usage. ACM Trans. Math. Soft.,

5(3):308–323, Sept. 1979.

[74] François Le Gall. Powers of tensors and fast matrix multiplication.

In Proceedings of the 39th International Symposium on Symbolic and

Algebraic Computation, ISSAC 14, pages 296–303, New York, NY, USA,

2014. ACM.

[75] J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc. An input-adaptive

and in-place approach to dense tensor-times-matrix multiply. In Pro-

ceedings of the International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, SC 15, pages 76:1–76:12, New

York, NY, USA, 2015. ACM.

[76] J. Li, S. Ranka, and S. Sahni. Strassen’s matrix multiplication on

GPUs. In Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th

International Conference on, pages 157–164, Dec 2011.

[77] J. Li, A. Skjellum, and R. D. Falgout. A poly-algorithm for parallel

dense matrix multiplication on two-dimensional process grid topologies.

Concurrency: Practice and Experience, 9(5):345–389, May 1997.

[78] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo

Hida, Jimmy Iskandar, William Kahan, Suh Y. Kang, Anil Kapur,

Michael C. Martin, Brandon J. Thompson, Teresa Tung, and Daniel J.

172



Yoo. Design, implementation and testing of extended and mixed preci-

sion BLAS. ACM Trans. Math. Softw., 28(2):152–205, June 2002.

[79] Benjamin Lipshitz, Grey Ballard, James Demmel, and Oded Schwartz.

Communication-avoiding parallel Strassen: Implementation and perfor-

mance. In Proceedings of the International Conference on High Per-

formance Computing, Networking, Storage and Analysis (SC 12), pages

101:1–101:11. IEEE, 2012.

[80] Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S.

Quintana-Orti. Analytical modeling is enough for high-performance

BLIS. ACM Trans. Math. Softw., 43(2):12:1–12:18, August 2016.

[81] Qingshan Luo and John B. Drake. A scalable parallel Strassen’s matrix

multiplication algorithm for distributed-memory computers. In Pro-

ceedings of the 1995 ACM Symposium on Applied Computing, SAC 95,

pages 221–226, New York, NY, USA, 1995. ACM.

[82] Dmitry I. Lyakh. An efficient tensor transpose algorithm for multicore

CPU, Intel Xeon Phi, and NVidia Tesla GPU. Comput. Phys. Com-

mun., 189:84–91, 2015.

[83] W. Ma, S. Krishnamoorthy, O. Villa, K. Kowalski, and G. Agrawal. Op-

timizing tensor contraction expressions for hybrid CPU-GPU execution.

Cluster Comput., 16(1):131–155, 2011.

173



[84] Devin A. Matthews. TBLIS: Tensor-based library instantiation soft-

ware. Github Repository, 2016. https://github.com/devinamatth

ews/tblis.

[85] Devin A. Matthews. High-performance tensor contraction without

transposition. SIAM Journal on Scientific Computing, 40(1):C1–C24,

2018.

[86] Nvidia. CUTLASS: CUDA templates for linear algebra subroutines

(v0.1.0). GitHub Repository, 2017. https://github.com/NVIDIA/

cutlass/releases/tag/v0.1.0.

[87] Nvidia. cuBLAS. Available Online, 2018. https://developer.nvidia

.com/cublas.

[88] Nvidia. CUDA C programming guide. Available Online, 2018. https:

//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[89] Nvidia. Summit GPU supercomputer enables smarter science. Nvidia

Developer Blog, 2018. https://devblogs.nvidia.com/summit-gpu-

supercomputer-enables-smarter-science/.

[90] OpenBLAS, an optimized BLAS library. Available Online. http:

//www.openblas.net.

[91] V. Ya. Pan. Strassen’s algorithm is not optimal trilinear technique

of aggregating, uniting and canceling for constructing fast algorithms

174

https://github.com/devinamatthews/tblis
https://github.com/devinamatthews/tblis
https://github.com/NVIDIA/cutlass/releases/tag/v0.1.0
https://github.com/NVIDIA/cutlass/releases/tag/v0.1.0
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://devblogs.nvidia.com/summit-gpu-supercomputer-enables-smarter-science/
https://devblogs.nvidia.com/summit-gpu-supercomputer-enables-smarter-science/
http://www.openblas.net
http://www.openblas.net


for matrix operations. In Proceedings of the 19th Annual Symposium on

Foundations of Computer Science, SFCS 78, pages 166–176, Washington,

DC, USA, 1978. IEEE Computer Society.

[92] V. Ya. Pan. Trilinear aggregating with implicit canceling for a new

acceleration of matrix multiplication. Computers & Mathematics with

Applications, 8(1):23–34, 1982.

[93] Devangi N. Parikh, Jianyu Huang, Margaret E. Myers, and Robert A.

van de Geijn. Learning from optimizing matrix-matrix multiplication.

In 8th NSF/TCPP Workshop on Parallel and Distributed Computing

Education (EduPar-18). IEEE, 2018.

[94] E. Peise, D. Fabregat-Traver, and P. Bientinesi. On the performance

prediction of BLAS-based tensor contractions. In S. A. Jarvis, S. A.

Wright, and S. D. Hammond, editors, High Performance Computing

Systems. Performance Modeling, Benchmarking, and Simulation, num-

ber 8966 in Lecture Notes in Computer Science, pages 193–212. Springer

International Publishing, 2014.

[95] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Ham-

mond, and Nichols A. Romero. Elemental: A new framework for

distributed memory dense matrix computations. ACM Trans. Math.

Softw., 39(2):13:1–13:24, February 2013.

[96] Krishnan Raghavachari, Gary W. Trucks, John A. Pople, and Martin

175



Head-Gordon. A fifth-order perturbation comparison of electron corre-

lation theories. Chemical Physics Letters, 157(6):479 – 483, 1989.

[97] Leslie Rice. Performance optimization for the K-Nearest Neighbors

kernel using Strassen’s algorithm. 2017. Undergraduate Honors Thesis,

The University of Texas at Austin.

[98] Martin D. Schatz, Tze Meng Low, Robert A. van de Geijn, and Tamara G.

Kolda. Exploiting symmetry in tensors for high performance: Multipli-

cation with symmetric tensors. SIAM Journal on Scientific Computing,

36(5):C453–C479, 2014.

[99] Martin D. Schatz and Jack Poulson Robert A. van de Geijn. Parallel

matrix multiplication: A systematic journey. SIAM Journal on Scien-

tific Computing, 38(6):C748–C781, 2016.

[100] Arnold Schönhage. Partial and total matrix multiplication. SIAM

Journal on Computing, 10(3):434–455, 1981.

[101] Jacob Scott, Olga Holtz, and Oded Schwartz. Matrix multiplication

I/O-complexity by path routing. In Proceedings of the 27th ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA 15),

pages 35–45. ACM, 2015.

[102] G. E. Scuseria, A. C. Scheiner, T. J. Lee, J. E. Rice, and H. F. Schaefer.

The closed-shell coupled cluster single and double excitation (CCSD)

model for the description of electron correlation. A comparison with

176



configuration interaction (CISD) results. J. Chem. Phys., 85(5):2881,

March 1987.

[103] Isaiah Shavitt and Rodney J. Bartlett. Many-Body Methods in Chem-

istry and Physics: MBPT and Coupled-Cluster Theory. Cambridge

University Press, Cambridge ; New York, first edition, August 2009.

[104] A. V. Smirnov. The bilinear complexity and practical algorithms for

matrix multiplication. Computational Mathematics and Mathematical

Physics, 53(12):1781–1795, 2013.

[105] Tyler M. Smith. Multilevel Optimized Matrix-matrix Multiplication

Sandbox (MOMMS). GitHub Repository. https://github.com/tlrm

chlsmth/momms.

[106] Tyler M. Smith. Theory and practice of classical matrix-matrix multi-

plication for hierarchical memory architectures. 2017. PhD thesis, The

University of Texas at Austin.

[107] Tyler M. Smith and Robert A van de Geijn. Pushing the bounds for

matrix-matrix multiplication. arXiv preprint arXiv:1702.02017, 2017.

[108] Tyler M. Smith, Robert A. van de Geijn, Mikhail Smelyanskiy, Jeff R.

Hammond, and Field G. Van Zee. Anatomy of high-performance many-

threaded matrix multiplication. In 28th IEEE International Parallel

and Distributed Processing Symposium (IPDPS 2014), 2014.

177

https://github.com/tlrmchlsmth/momms
https://github.com/tlrmchlsmth/momms


[109] Tyler M. Smith, Robert A. van de Geijn, Mikhail Smelyanskiy, and

Enrique S. Quintana-Ort́ı. Toward ABFT for BLIS GEMM. FLAME

Working Note #76. Technical Report TR-05-2015, The University of

Texas at Austin, Department of Computer Sciences, June 2015.

[110] Edgar Solomonik, Devin Matthews, Jeff R. Hammond, John F. Stanton,

and James Demmel. A massively parallel tensor contraction framework

for coupled-cluster computations. Journal of Parallel and Distributed

Computing, 74(12):3176–3190, 2014.

[111] Paul Springer and Paolo Bientinesi. Tensor contraction benchmark v0.1.

GitHub Repository, December 2016. https://github.com/hpac/tccg/

tree/master/benchmark.

[112] Paul Springer and Paolo Bientinesi. Design of a high-performance

GEMM-like tensor-tensor multiplication. ACM Trans. Math. Softw.,

44(3):28:1–28:29, January 2018.

[113] Paul Springer, Jeff R. Hammond, and Paolo Bientinesi. TTC: A high-

performance compiler for tensor transpositions. ACM Trans. Math.

Softw., 44(2):15:1–15:21, August 2017.

[114] Andrew James Stothers. On the complexity of matrix multiplication.

2010. PhD thesis, The University of Edinburgh.

[115] Volker Strassen. Gaussian elimination is not optimal. Numerische

Mathematik, 13(4):354–356, August 1969.

178

https://github.com/hpac/tccg/tree/master/benchmark
https://github.com/hpac/tccg/tree/master/benchmark


[116] Volker Strassen. The asymptotic spectrum of tensors and the exponent

of matrix multiplication. In Proceedings of the 27th Annual Symposium

on Foundations of Computer Science, SFCS 86, pages 49–54, Washing-

ton, DC, USA, 1986. IEEE Computer Society.

[117] Mithuna Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck. Tun-

ing Strassen’s matrix multiplication for memory efficiency. In Proceed-

ings of the 1998 ACM/IEEE Conference on Supercomputing (SC 98),

pages 1–14. IEEE, 1998.

[118] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra

Package. The MIT Press, 1997.

[119] Robert A. van de Geijn, Jianyu Huang, Margaret E. Myers, Devangi N.

Parikh, and Tyler M. Smith. Lowering barriers into HPC through open

education. In 2017 Workshop on Education for High-Performance Com-

puting (EduHPC). IEEE, 2017.

[120] Robert A. van de Geijn and Jerrell Watts. SUMMA: Scalable universal

matrix multiplication algorithm. Concurrency: Practice and Experi-

ence, 9(4):255–274, April 1997.

[121] Field G. Van Zee. libflame: The Complete Reference. www.lulu.com,

2009.

[122] Field G. Van Zee, Tyler Smith, Francisco D. Igual, Mikhail Smelyanskiy,

Xianyi Zhang, Michael Kistler, Vernon Austel, John Gunnels, Tze Meng

179



Low, Bryan Marker, Lee Killough, and Robert A. van de Geijn. The

BLIS framework: Experiments in portability. ACM Transactions on

Mathematical Software, 42(2):12:1–12:19, June 2016.

[123] Field G. Van Zee and Tyler M. Smith. Implementing high-performance

complex matrix multiplication via the 3m and 4m methods. ACM

Trans. Math. Softw., 44(1):7:1–7:36, July 2017.

[124] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework for

rapidly instantiating BLAS functionality. ACM Trans. Math. Soft.,

41(3):14:1–14:33, June 2015.

[125] Pete Warden. Why GEMM is at the heart of deep learning. https:

//petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-

deep-learning/, 2015.

[126] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear alge-

bra software. In SC 98: Proceedings of the 1998 ACM/IEEE Conference

on Supercomputing, pages 38–38, Nov 1998.

[127] J. L. Whitten. Coulombic potential energy integrals and approxima-

tions. The Journal of Chemical Physics, 58(10):4496–4501, 1973.

[128] V. V. Williams. Multiplying matrices faster than Coppersmith-Winograd.

In Proceedings of the Forty-fourth Annual ACM Symposium on Theory

of Computing, STOC 12, pages 887–898, New York, NY, USA, 2012.

ACM.

180

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/


[129] Shmuel Winograd. On multiplication of 2× 2 matrices. Linear algebra

and its applications, 4(4):381–388, 1971.

[130] Kamen Yotov, Xiaoming Li, Gang Ren, MJS Garzaran, David Padua,

Keshav Pingali, and Paul Stodghill. Is search really necessary to gener-

ate high-performance BLAS? Proceedings of the IEEE, 93(2):358–386,

2005.

[131] Chenhan D. Yu, Jianyu Huang, Woody Austin, Bo Xiao, and George

Biros. Performance optimization for the K-Nearest Neighbors kernel on

x86 architectures. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, SC

15, pages 7:1–7:12, New York, NY, USA, 2015. ACM.

181



Vita

Jianyu Huang was born in Jiangsu, China. He received his Bache-

lor’s degree in Computer Science and Technology from Beihang University

(BUAA), Beijing, China in 2013. Since August 2013, he has been a PhD

student in the Department of Computer Science at the University of Texas at

Austin, working with Robert van de Geijn. His research has been supported by

the Microelectronics and Computer Development Fellowship, Graduate School

Summer Fellowship, and Graduate Research Assistantship at UT Austin. He

was a research and software engineering intern at Microsoft Research Asia,

VMware Inc., and Intel Labs.

Email address: jianyu.huang@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

182


	Acknowledgments
	Abstract
	List of Figures
	Chapter 1. Introduction
	Motivation
	Solution
	Contributions
	Outline of the dissertation

	Chapter 2. Related Work
	High-performance matrix multiplication algorithm
	Computing  C = A B + C 
	Computing with submatrices
	Basic Linear Algebra Subprograms (BLAS)
	Level-3 BLAS matrix-matrix multiplication
	The GotoBLAS algorithm
	Hierarchical memory architectures
	Multi-threaded implementation
	Other approaches

	Literature review for FMM algorithms
	Theory
	Practice

	Summary

	Chapter 3. A Practical Strassen's Algorithm
	Strassen's algorithm reloaded
	The basic idea
	Classic Strassen's algorithm
	Practical considerations
	One-level Strassen reloaded
	Two-level Strassen reloaded
	Additional levels

	Implementation and analysis
	Implementations
	Performance model
	Discussion

	Performance experiments
	Single node experiments
	Many-core experiments
	Distributed memory experiments

	Summary

	Chapter 4. Practical Fast Matrix Multiplication Algorithms
	Fast matrix multiplication basics
	One-level fast matrix multiplication algorithms
	Kronecker product
	Recursive block indexing (Morton-like ordering)
	Representing two-level FMM with the Kronecker product
	Additional levels of FMM

	Implementation and analysis
	Code generation
	Performance model
	Discussion
	Incorporating the performance model into the code generator

	Performance experiments
	Implementation and architecture information
	Benefit of hybrid partitions
	Sequential and parallel performance

	Summary

	Chapter 5. A Practical Strassen's Algorithm for Tensor Contraction
	Background on high-performance tensor contraction
	Tensor
	Tensor contraction
	General stride layouts
	Block scatter matrix view

	Strassen's algorithm for tensor contraction
	Implementations
	Packing
	Micro-kernel
	Variations

	Performance model
	Performance experiments
	Single node experiments
	Distributed memory experiments

	Related work on tensor contraction
	Summary

	Chapter 6. A Practical Strassen's Algorithm on GPUs
	Background on Nvidia GPUs
	GPU programming model
	Nvidia Volta GPUs
	Matrix multiplication on GPUs

	Strassen's algorithm on Nvidia GPUs
	Implementations
	Exploiting more parallelism
	Reducing memory requirement
	Handling the fringes
	Adapting software prefetching

	Performance experiments
	Summary

	Chapter 7. Conclusion
	Results
	Future work

	Appendices
	Appendix A. Table of Acronyms
	Appendix B. Table of Symbols
	Appendix C.   "426830A 3,2,3 "526930B  FMM algorithm
	Appendix D. Derivation of Kronecker Product
	Appendix E. Numerical Stability
	Numerical stability for Strassen's algorithm
	Theoretical bound
	Empirical experiment

	Numerical stability for FMM algorithms
	Theoretical bound
	Empirical experiment

	Improving the numerical accuracy

	Bibliography
	Vita

