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STRASSEN’S ALGORITHM FOR TENSOR CONTRACTION∗

JIANYU HUANG† , DEVIN A. MATTHEWS‡ , AND ROBERT A. VAN DE GEIJN†

Abstract. Tensor contraction (TC) is an important computational kernel widely used in numer-
ous applications. It is a multidimensional generalization of matrix multiplication (GEMM). While
Strassen’s algorithm for GEMM is well studied in theory and practice, extending it to accelerate TC
has not been previously pursued. Thus, we believe this to be the first paper to demonstrate how one
can in practice speed up TC with Strassen’s algorithm. By adopting a block-scatter-matrix format,
a novel matrix-centric tensor layout, we can conceptually view TC as GEMM for a general stride
storage, with an implicit tensor-to-matrix transformation. This insight enables us to tailor a re-
cent state-of-the-art implementation of Strassen’s algorithm to a recent state-of-the-art TC, avoiding
explicit transpositions (permutations) and extra workspace, and reducing the overhead of memory
movement that is incurred. Performance benefits are demonstrated with a performance model as
well as in practice on modern single core, multicore, and distributed memory parallel architectures,
achieving up to 1.3× speedup. The resulting implementations can serve as a drop-in replacement for
various applications with significant speedup.

Key words. multilinear algebra, Strassen’s algorithm, tensor contraction, matrix multiplication

AMS subject classification. 65F99

DOI. 10.1137/17M1135578

1. Introduction. This paper builds upon a number of recent developments: the
GotoBLAS algorithm for matrix multiplication (GEMM) [14] that underlies the cur-
rently fastest implementations of GEMM for CPUs; the refactoring of the GotoBLAS
algorithm as part of the BLAS-like Library Instantiation Software (BLIS) [46, 45],
which exposes primitives for implementing BLAS-like operations; the systematic par-
allelization of the loops that BLIS exposes so that high-performance can be flexibly at-
tained on multicore and many-core architectures [37]; the casting of tensor contraction
(TC) in terms of the BLIS primitives and avoiding the explicit tensor transposition
(a permutation of the data elements in memory) required by traditional implemen-
tations by fusion with existing data movement in the GotoBLAS algorithm [32, 40];
the practical high-performance implementation of the classical Strassen’s algorithm
(Strassen) [42] in terms of variants of the BLIS primitives [20]; and the extension of
this implementation [19] to a family of Strassen-like fast matrix multiplication algo-
rithms [4]. Together, these results facilitate what we believe to be the first extension
of Strassen’s algorithm to TC.

Contributions. This work presents the first efficient implementation of Strassen’s
algorithm for TC, a significant problem with numerous applications.

• It describes how to extend Strassen’s algorithm to TC without the explicit
transposition of data that inherently incurs significant memory movement
and workspace overhead.
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• It provides a performance model for the cost of the resulting family of algo-
rithms.

• It details the practical implementation of these algorithms, including how to
exploit variants of the primitives that underlie BLIS and a data layout to
memory for the tensors.

• It demonstrates practical speedup on modern single core and multicore CPUs.
• It illustrates how the local use of the Strassen’s TC algorithm on each node

improves performance of a simple distributed memory TC.
Together, these results unlock a new frontier for the research and application of
Strassen’s algorithm.

2. Background. We briefly review how high-performance GEMM is imple-
mented first, before discussing the practical implementations of high-performance
Strassen for GEMM.

2.1. High-performance GEMM. Let A, B, and C be matrices of sizes Ni ×
Np, Np ×Nj , and Ni ×Nj , respectively, and α and β be scalars. A general matrix-
matrix multiplication (GEMM) in the BLAS interface [10] is expressed as C := αAB+

βC. Written elementwise, Ci,j := α
∑Np−1
p=0 Ai,p ·Bp,j +βCi,j , where · denotes scalar

multiplication. We focus on the special case α = 1 and β = 1 henceforth for brevity.
A key insight underlying modern high-performance implementations of GEMM

is to organize the computations by partitioning the operands into blocks for temporal
locality and to pack (copy) such blocks into contiguous buffers that fit into various
levels of memory for spatial locality [14]. Figure 1 (left) illustrates the GotoBLAS
algorithm as implemented in BLIS. Cache blocking parameters {mC , nC , kC} deter-
mine the submatrix sizes of Bp (kC × nC) and Ai (mC × kC), such that they fit in
various caches (we use the standard GEMM dimensions {m,n, k} in defining block-
ing parameters for brevity and consistency with [46] but note that the meaning of
{m,n, k} alone is changed in section 2.3). During the computation, row panels Bp

are contiguously packed into buffer B̃p to fit in the L3 cache. Blocks Ai are similarly

packed into buffer Ãi to fit in the L2 cache. Register block sizes {mR, nR} relate
to submatrices in registers that contribute to C. In the microkernel (the inner most
loop), a small mR × nR microtile of C is updated by a pair of mR × kC and kC × nR
slivers of Ai and Bp. The above parameters can be analytically chosen [28].

2.2. High-performance STRASSEN. If the three operands are partitioned into
quadrants,

A =

(
A0 A1

A2 A3

)
,B =

(
B0 B1

B2 B3

)
,C =

(
C0 C1

C2 C3

)
,

then it can be checked that the operations

(2.1)

M0 =(A0 + A3)(B0 + B3); C0+= M0;C3+= M0;
M1 =(A2 + A3)B0; C2+= M1;C3−= M1;
M2 =A0(B1 −B3); C1+= M2;C3+= M2;
M3 =A3(B2 −B0); C0+= M3;C2+= M3;
M4 =(A0 + A1)B3; C1+= M4;C0−= M4;
M5 =(A2 −A0)(B0 + B1); C3+= M5;
M6 =(A1 −A3)(B2 + B3); C0+= M6;

compute C+= AB, with seven instead of eight (sub)matrix multiplications, decreas-
ing the total number of arithmetic operations by a factor of 7/8 (ignoring the total
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Fig. 1. Figure from [20] (used with permission from the authors). Left: illustration of the
BLIS implementation of the GotoBLAS algorithm. All computation is cast in terms of a highly
optimized microkernel. Right: modification that implements the representative computation M =
(X + Y)(V + W); D+= M; E+= M of each row of computations in (2.1). X, Y are submatrices of
A; V, W are submatrices of B; D, E are submatrices of C; M is the intermediate matrix product.
Note that the packing buffers Ãi and B̃p stay in cache.

number of extra additions since they are lower-order terms). If all matrices are square
and of size N ×N , theoretically this single step of Strassen [42] can be applied re-
cursively, resulting in the classical Strassen with a cost of O(N2.807).

In practice, only a few levels of the recursion are leveraged because the reduction in
computations is quickly overwhelmed by the cost of extra additions and extra memory
movements [4, 7, 20]. Furthermore, Strassen is known to experience degradation in
numerical stability especially when more than two levels of recursion are incorporated
[18, 8, 3].

Figure 1 (right) illustrates the modifications done in [20] to make Strassen prac-
tical. During the packing process, the additions of the submatrices A and B can be
incorporated into the packing buffers Ãi and B̃p, avoiding extra memory movement,
and reducing workspace requirements. In the microkernel, a submatrix that con-
tributes to C can be directly added to the appropriate parts of multiple submatrices
of C, once it is computed in machine registers. This optimization avoids the need
for temporary intermediate matrices Mi and reduces extra memory movement. As
shown in [20], this approach makes Strassen practical for smaller matrices and ma-
trices of special shape (importantly, for rank-k updates, where Np is relatively small
comparing to Ni and Nj). This research is pushed further [19] by revealing that
Strassen performs relatively better than most other Strassen-like fast matrix multi-
plication algorithms with one or two levels of recursions. For this reason, we do not
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extend those Strassen-like fast matrix multiplication algorithms to TC in this paper,
although it may be worthwhile in future work to pursue certain of these algorithms
for highly nonsquare TC shapes.

2.3. High-performance tensor contraction. The definition and notation of
tensors and TC are briefly reviewed before describing the tensor layouts that enable
high-performance TC.

Tensor. The concept of matrices is extended to multiple dimensions through
the use of tensors. For example, consider a three-dimensional (3-D) tensor T of size
4 × 6 × 3. T can be thought of as a 3-D array of elements, where each element is
given by indexing: T i,j,k ∈ R. The possible values for i, j, and k are determined
by the lengths of the dimensions as given in the tensor size, i.e., 0 ≤ i < Ni = 4,
0 ≤ j < Nj = 6, and 0 ≤ k < Nk = 3.

In general, a d-dimensional tensor T ∈ RNi0×· · ·×RNid−1 has elements indexed as
T i0,...,id−1

∈ R ∀ (i0, . . . , id−1) ∈ Ni0 × · · · ×Nid−1
, where M × · · · ×N is a shorthand

notation for the set of all tuples (i, . . . , j), 0 ≤ i < M ∧ · · · ∧ 0 ≤ j < N . The
length of the dimension indexed by some symbol x is given by Nx ∈ N. The indices
may be collected in an ordered index bundle Id = (i0, . . . , id−1), such that T Id ∈
R ∀ Id ∈ Ni0 × · · · × Nid−1

. In general we will denote the dimension of a tensor T
as dT and the bundle length NId ∈ N as the total length of an index bundle Id, i.e.,
NId =

∏
i∈Id Ni = Ni0 · · · · ·Nid−1

.
Tensor contraction. TC is the generalization of matrix multiplication to many

dimensions. As an example, consider the TC illustrated in Figure 2(a), Ca,b,c+ =∑Nd−1
d=0 Ad,c,a ·Bd,b. The summation is usually suppressed and instead implied by the

Einstein summation convention, where indices that appear twice on the right-hand
side are summed over. Additionally, possible scalar factors α and β are ignored for
simplicity. In contrast to the definition of matrix multiplication in section 2.1, TC
may have more than one index summed over and more than one nonsummed index in
each of A and B. The groups of indices that correspond to i, j, and p in the matrix
case are grouped into index bundles Im, Jn, and Pk. For this example, the bundles are
(a, c), (b), and (d), respectively. Other than involving more indices, TC is precisely
the same mathematical operation as matrix multiplication.

For general TCs, let A, B, and C be tensors of any dimensionality satisfying
dA + dB − dC = 2k, k ∈ N. Then, let Im, Jn, and Pk be index bundles with
m = dA − k and n = dB − k. Last, let the index reordering ΠA((i0, . . . , idA−1)) =
(iπA(0), . . . , iπA(dA−1)) be defined by the bijective map πA : {0, . . . , dA−1} → {0, . . . ,
dA − 1}, and similarly for ΠB and ΠC. The general definition of TC is then given by

CΠC(ImJn)+ =
∑

Pk∈Np0
×···×Npk−1

AΠA(ImPk) ·BΠB(PkJn),

where juxtaposition of two index bundles (e.g., ImJn) denotes concatenation. The
indices in the bundles Im and Jn are generally called free, external, or uncontracted
indices, while the indices in the Pk bundle are called bound, internal, or contracted
indices.1 In the following we will suppress the explicit summation over Pk. The
number of leading-order floating point operations required for TC is 2NIm ·NJn ·NPk

1The preferred terms depend on context and the specific field of research. In some cases, these
terms have specific meaning beyond the indication of how summation is performed; for example,
in quantum chemistry the terms internal and external refer to the diagrammatic representation of
TCs [6].
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(a) Tensor contraction Ca,b,c+= Ad,c,a ·Bd,b with Na = 4, Nb = Nd = 8, and Nc = 2. The
relative location of each data element in memory is given assuming a generalized column-
major layout.
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(b) Block scatter matrix view of (a), where Ad,c,a, Bd,b, and Ca,b,c are mapped to matrices
Ai,p, Bp,j , and Ci,j : rscatT and cscatT denote the scatter vectors; rbsT and cbsT denote
the block scatter vectors. Element locations are given by the sum of the row and column
scatter vector entries.

Fig. 2. An example to illustrate Strassen’s algorithm for TC. The dashed lines denotes
Strassen 2 × 2 partitions mapping from block scatter matrix view (bottom) to the original ten-
sor (top). In this example the partitions are regular subtensors, but this is not required in general.

= 2(
∏
i∈Im Ni) · (

∏
j∈Jn Nj) · (

∏
p∈Pk

Np). If the length of each dimension is O(N),

the TC operation requires O(Nm+n+k) flops.
The example illustrated in Figure 2(a) has index bundles as noted above and

index reordering given by ΠA((i0, i1, i2)) = (i2, i1, i0), ΠB((i0, i1)) = (i0, i1), and
ΠC((i0, i1, i2)) = (i0, i2, i1). Note that, for example, defining Im as (c, a) would give
different index reorderings—the choice of ordering withing the index bundles and
the index reorderings is not unique. The number of floating point operations and
memory accesses for this contraction is identical to that for a matrix multiplication
of (Na ·Nc)×Nd, Nd×Nb, and (Na ·Nc)×Nb matrices, if performed entirely in place
(i.e., without transposition).

General stride layouts. The well-known column-major and row-major matrix
layouts may be extended to tensors as the generalized column- and row-major ten-
sor layouts, where elements are stored contiguously along the first dimension or last
dimension, respectively. However, in general we may assume only a general tensor
layout, which extends the general matrix layout [46] by replacing matrix row and
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column strides (e.g., rsM and csM) with a stride associated to each tensor dimension.
For a d-dimensional tensor T indexed by Id, the strides sT ;ik ∈ N ∀ 0 ≤ k < d form
the set ST = (sT ;i0 , . . . , sT ;id−1

), which gives general stride element locations relative
to T 0,...,0,

LOCGS(T Id , ST ) =

d−1∑
k=0

ik · sT ;ik .

In general, the stride of the dimension indexed in T by a particular symbol x is
denoted by sT ;x. The generalized column-major and row-major layouts can also

be represented using a general stride layout, in which case sT ;ik =
∏k−1
l=0 Nil and

sT ;ik =
∏d−1
l=k+1Nil , respectively.

In Figure 2(a), C is stored in the generalized column-major layout. The numbers
represent the location of the element Ca,b,c relative to the element C0,0,0 in the tensor
storage layout. The strides are sC;a = 1, sC;b = Na = 4, and sC;c = Na ·Nb = 32. The
element location of Ca,b,c is a · sC;a + b · sC;b + c · sC;c = a+ 4b+ 32c.

Block scatter matrix view. In [32] it is shown that tensors can be represented
in a matrix-centric layout that allows for a simple but efficient implementation of TC
using the BLIS framework. The main idea of that work is that the locations of tensor
elements of T can be described in a matrix format, the scatter matrix layout, for an
Ni ×Nj matrix view of T , T, very similarly to the general stride matrix layout,

(2.2) LOCSM (Ti,j , rscatT , cscatT ) = rscatT ;i + cscatT ;j ,

where rscatT ∈ NNi and cscatT ∈ NNj . If we define the index bundle Ip of size p
as the set of indices of T that map to columns of T and the index bundle Jq of size
q = dT − p as the set of indices that map to rows of T, then by inspection of the
general stride layout we can see that the scatter vector rscatT with respect to Ip is
given by

rscatT ;i =

p−1∑
k=0

ik · sT ;ik , i =

p−1∑
k=0

ik ·
k−1∏
l=0

Nil ,

∀ (i0, . . . , ip−1) ∈ Ni0 × · · · ×Nip−1 ;

and similarly for cscatT with respect to Jq.
The relative location of Ca,b,c in Figure 2(a) or Ci,j in the matrix view of C in

Figure 2(b) is rscatC;i + cscatC;j (e.g., LOCSM (C2,3,1) = LOCSM (C6,3) = rscatC;6 +
cscatC;3 = 34 + 12). Here, (1) rscatC;i = a · sC;a + c · sC;c = a+ 32c, i = a+ c ·Na =
a + 4c∀ (a, c) ∈ Na × Nc; (2) cscatC;j = b · sC;b = 4b, j = b∀ (b) ∈ Nb. These scatter
vectors are shown at the top and the left of the matrix view of C in Figure 2(b).

The general definition of TCs gives a natural mapping from tensors to matrices
through the index bundles Im, Jn, and Pk. Thus, the bundle Im defines rscatA
and rscatC, Jn defines cscatB and cscatC, and Pk defines cscatA and rscatB. If
we define matrices Ai,k, Bk,j , and Ci,j and imbue them with scatter matrix layouts
using the scatter vectors from the corresponding tensors, we can perform TC using the
high-performance matrix multiplication algorithm introduced in section 2.1, without
explicitly forming those matrices in extra working buffers and incurring the associated
cost of data movement.

Since we are using the BLIS implementation of the GotoBLAS algorithm, we
can leverage the fact that these matrices will be partitioned and packed to introduce
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further optimizations. In the microkernel (Figure 1), the matrix C will be partitioned
into mR × nR blocks and the matrices A and B will be partitioned into mR × kC
and kC × nR slivers, respectively. If we further partition kC into smaller increments
of a new parameter kR, on the order of mR and nR, then we will end up with only
matrix blocks of very small size. As in [32], we can partition the scatter vectors into
very small blocks of size mR, nR, and kR as well and use optimized algorithms in the
packing kernels (i.e., packing process in section 2.1) and microkernel when the scatter
values for the current block are regularly spaced (i.e., strided). The regular strides for
each {m,n, k}R-sized block of {r, c}scatT (mR for rscatA and rscatC, nR for cscatB
and cscatC, kR for cscatA and rscatB), or zero if no regular stride exists, are collected
in a row/column block scatter vector {r, c}bsT of length d Ni

{m,n,k}R e and similarly for

the other row/column scatter vectors. With these block scatter vectors, we can then
utilize efficient SIMD vector load/store instructions for the stride-one index, or vector
gather/scatter fetch instructions for the stride-n index, in a favorable memory access
pattern.

In Figure 2(b), assuming mR = nR = kR = 4, rbsC = (1, 1), and cbsC = (4, 4),
since the regular strides for each four elements of rscatC and cscatC are 1 and 4,
respectively.

3. Strassen for tensor contraction. The operations summarized in section 2.2
are all special cases of

(3.1) M = (X + δY)(V + εW); D+= γ0M; E+= γ1M;

for appropriately chosen γ0, γ1, δ, ε ∈ {−1, 0, 1}. Here, X and Y are submatrices of
A, V and W are submatrices of B, and D and E are submatrices of C. As in [20],
this scheme can be extended to multiple levels of Strassen.

Instead of partitioning the tensor A into subtensors X and Y and so on for B
and C, we partition the matrix representations A, B, and C (block scatter matrix
view of A, B, C) as in the matrix implementation of Strassen. Figure 2 provides
an example to illustrate the partition mechanism. Block scatter matrix layouts for
these submatrices may be trivially obtained by partitioning the scatter and block
scatter vectors of the entire matrices along the relevant dimensions. Once imbued
with the appropriate layouts, these submatrices may then be used in the BLIS-based
Strassen of [20] along with modifications to the packing kernels and microkernel as
in [32].

In fusing these two methodologies, we need to further address the consideration
of multiple block scatter vectors as required when packing and executing the micro-
kernel. Methods for dealing with this issue are described in section 4.1. The advantage
of using matrix partitions (which is enabled by the block scatter layout) instead
of tensor partitions is primarily that only the product of the lengths of each index
bundle, {NIm , NJn , NPk

}, must be considered when partitioning, and not the lengths
of individual tensor dimensions. For example, Strassen may be applied to any TC
where at least one dimension in each bundle is even in our approach, whereas the
last dimension (or rather, the dimension with the longest stride) should be even when
using subtensors.2 Additionally, when applying techniques such as zero-padding or
dynamical peeling [21, 43] in order to address edge cases, the overhead is magnified
for subtensor-based algorithms because the padding or peeling applies to only a single

2A dimension other than the last could also be chosen for partitioning, but the spatial locality
of the partitioning would be destroyed.
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tensor dimension; in our algorithm padding or peeling may be applied based on the
length of the entire index bundle, which is necessarily longer and therefore incurs less
overhead.

4. Implementations. We now detail the modifications to the block scatter
matrix-based packing kernel and microkernel as described in [32] for Strassen.

4.1. Packing. When packing submatrices for Strassen using (3.1), multiple
scatter and block scatter vectors must be considered. In our implementation, the
block scatter vector entries for the corresponding blocks in both input submatrices
(or all submatrices for L-level Strassen) are examined. If all entries are nonzero,
then the constant stride is used in packing the current block.3 Otherwise, the scatter
vectors are used when packing the current block, even though one or more of the
input submatrix blocks may in fact have a regular stride. In future work, we plan to
exploit these cases for further performance improvements.

4.2. Microkernel. As in [20], we use assembly-coded microkernels that include
the update to several submatrices of C from registers. In order to use this efficient
update, all block scatter vector entries for the relevant submatrix blocks of C must be
nonzero. Unlike in the packing kernel implementation, the case where only one or more
of the submatrix blocks is regular stride would be more difficult to take advantage of,
as the microkernel would have to be modified to flexibly omit or redirect individual
submatrix updates.

4.3. Variations. We implement three variations of Strassen for TC on the
theme illustrated in Figure 1 (right), extending [20].

• Naive Strassen: A classical implementation with temporary buffers. Sub-
matrices of matrix representations of A and B (A and B) are explicitly copied
and stored as regular submatrices. Intermediate submatrices M are explic-
itly stored and then accumulated into submatrices of matrix representation
of C (C). We store the M submatrices as regular, densely stored matrices
and handle their accumulation onto block scatter matrix layout submatrices
of C. Thus, the naive Strassen algorithm for TC is extremely similar to a
ttgt-based Strassen algorithm (see section 7), except that the tensors are
not required to be partitioned into regular subtensors.

• AB Strassen: The packing routines incorporate the summation of subma-
trices of matrix representations of A and B with implicit tensor-to-matrix
transformation into the packing buffers (see section 4.1), but explicit tempo-
rary buffers for matrices M are used.

• ABC Strassen: AB Strassen, but with a specialized microkernel (see sec-
tion 4.2) that incorporates additions of M to multiple submatrices of matrix
representation of C with implicit matrix-to-tensor transformation. Thus, the
ABC Strassen algorithm for TC requires no additional temporary buffers
beyond the workspace already incorporated in conventional GEMM imple-
mentations.

5. Performance model. In [20], a performance model was proposed to predict
the execution time T for variations of Strassen for matrices. In this section, we
extend that performance model to estimate the execution time T of ABC, AB,

3Note that when nonzero, the block scatter vector entries for different submatrices will always
be equal.
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Table 1
Notation table for performance model.

τa Time (in seconds) of one arithmetic (floating point) operation.

τb
(Bandwidth) Amortized time (in seconds) of 8 bytes contiguous

data movement from slow main memory to fast cache.

ρa Penalty factor for arithmetic operation effciency.

ρb Penalty factor for bandwidth.

λ Prefetching efficiency.

T Total execution time (in seconds).

Ta Time for arithmetic operations (in seconds).

Tm Time for memory operations (in seconds).

T×a Ta for (sub)tensor contractions.

T
A+
a , T

B+
a , T

C+
a Ta for extra (sub)tensor addtions/permutations.

T
A×
m , T

B×
m Tm for reading (sub)tensors in packing routines (Figure 1).

T
C×
m Tm for reading and writing (sub)tensors in microkernel (Figure 1).

T
A+
m , T

B+
m , T

C+
m

Tm for reading or writing (sub)tensors, related to the temporary

buffer as part of naive Strassen and AB Strassen.

WX
a /WX

m Coefficient for the corresponding TX
a /TX

m .

and naive variations of L-level Strassen for TC and the high-performance non-
Strassen TC routine we build on (see section 2.3; using tblis implementation [32, 31]
introduced in section 6; denoted as tblis henceforth). Due to the high dimensionality
of tensors and enormous types and combinations of permutations (transpositions) in
TC, it is impractical to exhaustively search for every tensor shape and tensor problem
size to find the best variation using empirical performance timings. Performance
modeling helps us to better understand the memory footprint and computation of
different Strassen implementations for TC and at least reduce the search space
to pick the right implementation. In our model, besides input problem size, block
sizes, and the hardware parameters such as the peak GFLOPS and bandwidth, T
also depends on the shape of the tensors and the extra permutations in the packing
routines and in the microkernel. In [19] we showed that a similar model is capable of
predicting the best-performing fast matrix multiplication algorithms from a large set
of candidates in most circumstances. The same predictive power should be applicable
to TC as well, over a wide range of tensor shapes and sizes.

Assumptions. Similar to [20], we assume two layers of memory hierarchy: slow
main memory and fast caches.4 For write operations, the lazy write-back policy is
enforced such that the time for writing into fast caches can be hidden. For read
operations, the latency for accessing the slow main memory is counted, while the
latency for accessing caches can be ignored.5

Notation. We summarize our notation in Table 1. The total execution time,
T , can be decomposed into a sum of arithmetic time Ta and memory time Tm ( 2© in
Table 2).

Arithmetic operations. As shown in 3©, Ta includes (sub)tensor contraction

(T×a ) and (sub)tensor additions/permutations (T
A+
a , T

B+
a , T

C+
a ). The corresponding

4The latency from multiple levels of cache for modern processors is hidden by hardware prefetch-
ing. Two layers of memory are good enough for modeling performance of regular applications such
as GEMM.

5Either because it can be overlapped with computation or because it can be amortized over
sufficient computations.
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Table 2
Equations for computing the execution time T and effective GFLOPS in our performance model.

1© Effective GFLOPS = 2 ·NIm ·NJn ·NPk
/T · 10−9

2© T = Ta + Tm

3© Ta = W×a · T×a +W
A+
a · TA+

a +W
B+
a · TB+

a +W
C+
a · TC+

a

4© Tm = W
A×
m · TA×

m +W
B×
m · TB×

m +W
C×
m · TC×

m

+W
A+
m · TA+

m +W
B+
m · TB+

m +W
C+
m · TC+

m

5© τa = 1/(ρa · Peak GFLOPS)

6© τb = 8/(ρb · Bandwidth)

Table 3
Various components of arithmetic and memory operations for tblis TC and various implemen-

tations of Strassen TC. The time shown in the first column for tblis TC and L-level Strassen
can be computed separately by multiplying the parameter in the τ column with the arithmetic/mem-
ory operation number in the corresponding entries. Here NIm =

∏
i∈Im Ni = Ni0 · · · · · Nim−1 ,

NJn =
∏

j∈Jn
Nj = Nj0 · · · · ·Njn−1 , NPk

=
∏

p∈Pk
Np = Np0 · · · · ·Npk−1 .

Type τ tblis L-level

T×a - τa 2NImNJnNPk
2
NIm
2L

NJn
2L

NPk
2L

T
A+
a - τa - 2

NIm
2L

NPk
2L

T
B+
a - τa - 2

NPk
2L

NJn
2L

T
C+
a - τa - 2

NIm
2L

NJn
2L

T
A×
m r τb NImNPk

dNJn
nc
e NIm

2L

NPk
2L
dNJn/2L

nc
e

T
B×
m r τb NJnNPk

NJn
2L

NPk
2L

T
C×
m r/w τb 2λNImNJnd

NPk
kc
e 2λ

NIm
2L

NJn
2L
d
NPk

/2L

kc
e

T
A+
m r/w τb NImNPk

NIm
2L

NPk
2L

T
B+
m r/w τb NJnNPk

NJn
2L

NPk
2L

T
C+
m r/w τb NImNJn

NIm
2L

NJn
2L

coefficients WX
a for tblis TC and L-level various Strassen TC are enumerated in

Table 4. For example, one-level Strassen TC has coefficients W×a = 7, W
A+
a =

5, W
B+
a = 5, and W

C+
a = 12, because it involves 7 submatrix multiplications, 5

additions with subtensors of A, 5 additions with subtensors of B, and 12 additions
with subtensors of C. Note that TXa is calculated by multiplying the unit time τa with
the arithmetic operation number in Table 3. We compute τa through 5©. The penalty
factor ρa ∈ (0, 1] is introduced, due to the extra computations involved in {r, c}scatT
and {r, c}bsT , and the slow microkernel invocation when the corresponding entries in
rbsC or cbsC are 0 (see section 4.2; nonregular stride access).

Memory operations. Based on the above assumptions, Tm can be broken down
into three parts ( 4© in Table 2):

• updating the temporary buffer that are parts of naive Strassen/AB Strassen

(W
T +
m · TT +

m );

• memory packing shown in Figure 1 (W
A×
m · TA×

m , W
B×
m · TB×

m );

• updating the submatrices of C shown in Figure 1 (W
C×
m · TC×

m ).
The coefficients WX

m are tabulated in Table 4. TXm is a function of block sizes
{mC , kC , nC} in Table 3, and the bundle lengths {NIm/2L, NJn/2L, NPk

/2L} because
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Table 4
Coefficient WX

a /WX
m mapping table for computing TX

a /TX
m in the performance model.

tblis
1-level 2-level

ABC AB Naive ABC AB Naive

W×a 1 7 7 7 49 49 49

W
A+
a - 5 5 5 95 95 95

W
B+
a - 5 5 5 95 95 95

W
C+
a - 12 12 12 144 144 144

W
A×
m 1 12 12 7 194 194 49

W
B×
m 1 12 12 7 194 194 49

W
C×
m 1 12 7 7 144 49 49

W
A+
m - - - 19 - - 293

W
B+
m - - - 19 - - 293

W
C+
m - - 36 36 - 432 432

the memory operation can repeat multiple times according to which loop they re-
side in. Table 3 characterizes each memory operation term by its read/write type and
the amount of memory in units of 64-bit double precision elements. In order to get
TXm , the memory operation number needs to be multiplied by the bandwidth τb. We
compute τb through 6©. We penalize the effect of permutations without stride-one
index accesss (see section 4.1; the corresponding entries in neither rbsT or cbsT are
1, i.e., using scatter/gather operation, or indirect memory addressing with (2.2)) by
setting ρb = 0.7. A similar parameter is introduced in [40] for regular non-Strassen

TC. Because of the software prefetching effects, T
C×
m = 2λ

NIm

2L

NJn

2L d
NPk

/2L

kc
eτb has an

extra parameter λ ∈ (0.5, 1], which denotes the prefetching efficiency. T
C×
m is a ceiling

function proportional to NPk
, since rank-k updates for accumulating submatrices of

C recur dNPk
/2L

kc
e times in the fourth loop (Figure 1).

Discussion. We can estimate the run time performance of various implementa-
tions, based on the performance model presented in Table 2. Here we define effective
GFLOPS ( 1© in Table 2) for TC as the metric to compare the performance of various
Strassen TC and tblis TC. The theoretical peak GFLOPS and bandwidth infor-
mation are given in section 6. In Figure 3, we demonstrate the modeled and actual
performance for a wide range of synthetic tensor sizes and shapes: NIm≈NJn≈NPk

;
NIm≈NJn≈16000, NPk

varies; NPk
≈1024, NIm≈NJn vary. How we generate syn-

thetic data is detailed in section 6.1.1. In Table 5, we quantitatively show the model
prediction accuracy.

• The model can predict the relative performance for various implementations
within 10% error bound.

• For NIm ≈NJn ≈NPk
(Figure 3(a)), the ABC Strassen implementations

outperform tblis, when NIm , NJn , NPk
are as small as 2kC , nearly 500,

while naive Strassen cannot beat tblis until the problem size is larger
than 2000.

• The “NIm≈NJn≈16000, NPk
varies” graphs (Figure 3(a)) show that whenNPk

is small, ABC Strassen performs best; when NPk
is large, AB Strassen

performs better. The coefficients WX
m in Table 4 help to illustrate the rea-

sons quantitatively. Two-level AB Strassen can achieve over 30% speedup
comparing with tblis.
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Table 5
Normalized root-mean-square error (NRMSE) between the actual and modeled performance for

synthetic data on single core. NRMSE is defined as the root of mean square error normalized by the
mean value of the measurements, which shows the model prediction accuracy.

TC shapes
NRMSE ( % )

tblis
1-level 2-level

ABC AB Naive ABC AB Naive
NIm≈NJn≈NPk

5.26 4.27 3.23 3.49 7.82 5.64 8.65
NIm≈NJn≈16000, NPk

varies 4.88 3.95 5.31 4.81 7.17 5.68 4.57
NPk
≈1024, NIm≈NJn vary 4.55 4.64 5.39 5.23 9.08 7.65 7.26

• According to the model, when NPk
is equal to appropriate multiple of kC

(NPk
= 2L · kC for L-level), ABC Strassen achieves the best performance.

We will leverage this observation in our distributed memory experiment.

6. Experiments. We perform our experimental evaluations for synthetic data
and real-world benchmarks on a single node and on a distributed memory architecture.
The implementations are written in C++, utilizing AVX assembly, based on the open
source TBLIS framework [31]. We compare against TBLIS’s TC routine (marked as
tblis) as well as the TTT routine from the MATLAB Tensor Toolbox [2] (linked
with Intel MKL [22], marked as TTT) for single node and the TC routine from the
Cyclops Tensor Framework [38] (also linked with Intel MKL, marked with ctf) for
distributed memory.

We measure the CPU performance results on the Maverick system at the Texas
Advanced Computing Center (TACC). Each node of that system consists of a dual-
socket (10 cores/socket) Intel Xeon E5-2680 v2 (Ivy Bridge) processor with 256 GB
memory (peak bandwidth: 59.7 GB/s with four channels) and a three-level cache (32
KB L1 data; 256 KB L2; 25.6 MB L3). The stable CPU clockrate is 3.54 GHz when
a single core is utilized (28.32 GFLOPS peak, marked in the graphs) and 3.10 GHz
when all 10 cores are in use (24.8 GFLOPS/core peak). We disable hyper-threading
explicitly and set thread affinity with KMP AFFINITY=compact which also ensures the
computation and the memory allocation all reside on the same socket.

The cache blocking parameters, mC = 96, nC = 4096, kC = 256, and the register
block sizes, mR = 8, nR = 4, are consistent with parameters used for the standard
BLIS dgemm implementation for this architecture. We use the default value of kR = 4
as defined in TBLIS. This makes the size of the packing buffer Ãi 192 KB and B̃p 8192
KB, which then fits the L2 cache and the L3 cache, respectively. Parallelization is
implemented mirroring that described in [37], but with the number of threads assigned
to each of the loops in Figure 1 automatically determined by the TBLIS framework.

6.1. Single node experiments.

6.1.1. Synthetic tensor contractions. To evaluate the overall performance
of various Strassen TC comparing against tblis TC for different tensor problem
sizes, shapes, and permutations, we randomly generate TC test cases with 2-D to 6-D
randomly permuted tensors as operands and test all these implementations for each
synthetic test case, as shown in Figures 3 and 4. We choose step size 256 to sample
uniformly {NIm , NJn , NPk

} for various tensor bundle lengths: square: NIm≈NJn≈
NPk

; rank-NPk
: NIm≈NJn≈16000, NPk

varies; fixed-NPk
: NPk

≈1024, NIm≈NJn vary.
For each bundle length {NIm , NJn , NPk

}, we randomly generate three {Im, Jn, Pk}
1-D, 2-D, or 3-D bundles, such that the product of each index length is close to
{NIm , NJn , NPk

}. The order of {Im, Jn, Pk} is then randomly permuted.
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Ñ

P
k

=
Ñ
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The generated bundle lengths may not exactly match the original sampled bundle
lengths. When we plot the actual performance of these synthetic test cases, we set
effective bundle lengths ÑIm = ÑJn = ÑPk

= (NIm · NJn · NPk
)1/3 for the square

bundle lengths; ÑPk
= NIm ·NJn ·NPk

/(16000 · 16000) for rank-NPk
bundle lengths;

and ÑIm = ÑJn = (NIm ·NJn ·NPk
/1024)1/2 for fixed-NPk

bundle lengths.
For the square and rank-NPk

tensor shapes on one core, tblis is rapidly outpaced
by ABC Strassen, with a crossover point of about 500 ≈ 2 · kC . ABC Strassen
is then shortly overtaken by AB Strassen and then by two-level AB Strassen.
As predicted by the performance model, the AB Strassen implementation is best
for very large problem sizes due to repeated updates to C in the ABC Strassen
algorithm. The naive Strassen implementations are never the best in these exper-
iments, although they may become more efficient than AB Strassen for extremely
large, square problems. These trends are repeated in the 10-core experiments, al-
though the crossover points are moved to larger tensor sizes.

For the fixed-NPk
shapes, total performance is lower for AB Strassen and naive

Strassen with scalability for the algorithms being especially impacted by the rela-
tively smaller NIm and NJn sizes. For these shapes ABC Strassen is always the
fastest method above the crossover point with standard tblis.

The actual performance data matches the predicted performance very well, with
some variation due to the randomization of the tensor lengths and permutations.
Using these performance models, it may be possible to analytically decide on which
algorithm to apply for a given TC to achieve the highest performance, allowing an
automated and seamless inclusion of Strassen into a TBLIS-like tensor framework.

6.1.2. Real-world benchmark. In Figure 5, we measure the performance of
various implementations for a subset of TC from the Tensor Contraction Benchmark
[39] on a single core and one socket. We present representative use cases where NPk

is
nearly equal to or larger than 2kC (512), for which Strassen can show performance
benefits, as illustrated in section 5. The right three test cases represent various reg-
ularly blocked TCs from coupled cluster with single and double excitations (CCSD)
[36, 17, 35], a workhorse quantum chemistry computational method. The fourth case
from the right illustrates the performance of tblis and Strassen TC for a pure
matrix case. Comparing this case and the CCSD contractions highlights some of
the performance issues that exist in the current implementation of the packing and
matrix-to-block scatter matrix copy kernels (see section 4.1 for details). On one core,
all Strassen implementations improve on tblis for these right four cases, and in
parallel one-level Strassen implementations give a speedup as well, exceeding TTT
performance especially in the case of AB Strassen. The gap between tblis and
TTT for these contractions is due to TTT’s use of Intel’s MKL library, which is more
highly optimized than the BLIS/TBLIS framework.

The left two benchmarks are again quantum chemistry applications using 3-D
tensors that arise in density-fitting (DF) calculations [47, 12]. These contractions
are also structurally equivalent to certain contractions from the coupled cluster with
perturbative triples (CCSD(T)) method [34], where the occupied (see section 6.2)
indices have been sliced. These cases show the improvement of tblis over TTT
as noted in [32] but do not show a speedup from Strassen except for one-level
ABC Strassen on one core. Our Strassen implementation performs the submatrix
multiplications sequentially, with only parallelization of each submatrix multiplication
step. A more comprehensive parallelization scheme, for example, using task-based
parallelism [4], may show better performance. Additionally, since the DF/CCSD(T)
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Fig. 5. Performance for representative user cases of benchmark from [40]. TC is identified by
the index string, with the tensor index bundle of each tensor in the order C-A-B, e.g., Cabcd+=
AaebfBdfce is denoted as abcd-aebf-dfce. Top: performance on single core. Bottom: performance
on one socket.

contractions are highly “nonsquare,” an alternate fast matrix multiplication algorithm
[4, 19] may perform better.

6.1.3. Shape-dependence experiments. The performance of the “particle-
particle ladder” contraction from CCSD, Zabij+= Wabef · T efij , is reported for a
range of tensor shapes in Figure 6. In these experiments, the length of the virtual
dimensions {a, b, e, f} is varied with respect to the length of the occupied dimensions
{i, j} such that the total number of FLOPs is roughly similarly to a 16000 × 16000
matrix multiplication, and the ratioNa : Ni is used as a proxy for tensor shape. A ratio
of 1:1 would reflect an extremely poor quality of basis set for the overall calculation
but is common when the calculation employs regular blocking. The other end of the
scale, with a ratio of ∼ 5 : 1, would then correspond to uneven blocking. This type
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Fig. 6. Performance for the contraction Zabij+= Wabef · T efij with varying Na : Ni ratio.
Left: performance on single core. Right: performance on one socket.

of blocking allows for better load balancing and lower overhead when Na and Ni are
very unequal in the overall calculation.

The performance of tblis and all of the one-level Strassen algorithms shows
essentially no performance degradation across the entire range tested. The two-level
Strassen algorithms show some performance degradation at larger ratios but still
show improvement over tblis. Eventually, all Strassen algorithms will cross over
and perform worse than tblis, as evidenced by the left two contractions in Fig-
ure 5 (these correspond to a ratio of about 22). However, the good performance of
Strassen out to reasonably large ratios shows that it could be beneficial in both
regular blocking and uneven blocking scenarios.

6.2. Distributed memory experiments. We demonstrate how to use the
Strassen TC implementations to accelerate a distributed memory implementation
of 4-D TC that exemplifies the two-particle “ring” terms from CCSD. In our tests
we set the length of virtual indices {a, b, e} to 10× that of occupied indices {i, j,m},
which is a ratio commonly encountered in quantum chemistry calculations using pop-
ular basis sets such as 6-311++G** [25] and cc-pVTZ [13]. The problem sizes tested
here correspond to calculations on systems with 80, 112, 160, 192, and 224 electrons
(i.e., Ni = Nj = Nm ∈ {40, 56, 80, 96, 112} and Na = Nb = Ne = 10 · Ni). We
use the contraction Zabij := WbmejT aeim as a demonstration example to show the
performance benefit.

We implement a SUMMA-like [44] algorithm for 4-D TC with MPI. Initially the
tensors W , T , and Z are distributed to a P × P mesh of MPI processes using a 2-D
block distribution over the a, b, and e dimensions, with the i, j, and m dimensions
stored locally (i.e., not distributed). After slicing W and T along the e dimension,
the contraction is broken down into a sequence of K contractions of tensor slice pairs,

Z :=
(
We;0 · · · We;K−1

) T e;0

...
T e;K−1


such that the e index length for each tensor slice pair {We;p,T e;p} is N ′e = Ne/K.
For each tensor slice pair, 0 ≤ p < K, We;p is broadcast within rows of the mesh,
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Fig. 7. Weak scalability performance result of the various implementations for a 4-D CCSD
application on distributed memory: Zabij := WbmejT aeim. CTF: the performance of the Cyclops
Tensor Framework [38] (linked with Intel MKL).

and T e;p is broadcast within columns of the mesh. Then a local TC for the received
tensor slice pair is performed to update the local block. Here tblis TC and various
Strassen TC are used as a drop-in replacement for this local TC.

We perform the distributed memory experiment on the same machine as the
single node experiment. The dual-socket processor has 10 cores on each socket. We
run one MPI process for each socket and leverage all 10 cores in a socket with thread
parallelism for all implementations. Figure 7 reports the weak scalability performance
result on up to 640 cores (32 nodes, 64 sockets).

In our experiments on P × P mesh of sockets (MPI processes), the lengths of
virtual indices are set to equal Na = Nb = Ne ≈ 400

√
P and the lengths of occupied

indices are set to equal Ni = Nj = Nm ≈ 40
√
P , which make NIm = NJn = NPk

≈
16000 ·P . This guarantees the local memory buffer allocated to Z, W , T is constant.
Our experiments verify that the above SUMMA-like algorithm is weakly scalable
on this constant local memory setup, regardless of which local TC implementation
we use. The local e index length N ′e is chosen close to N ′e = 1024/Nm (i.e., N ′e ∈
{25, 18, 12, 10, 9}) such that the local TC computations are performed with NPk

=
N ′e · Nm ≈ 4 · kC . The tensor slice pairs in the local TC computations matches the
shape when ABC Strassen achieves the best performance. Therefore, the one-level
and two-level ABC Strassen implementations outperform all other implementations.
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We also tested the Cyclops Tensor Framework [38], which also uses a SUMMA
or nested SUMMA algorithm but with possibly different block sizes and tensor dis-
tributions, as well as using the ttgt algorithm for local TC. We show it here as a
reference for state-of-the-art performance.

7. Related work. To the best of our knowledge, this work represents the first
implementation of Strassen’s algorithm for TC. In the context of Strassen for ma-
trices, there have been a variety of practical implementations [11, 21, 7, 4], including
the closely related implementation of Strassen using the BLIS framework [20] which
we extend.

For TC, recent work on high-performance TC [32, 40] serves as the motivation
and basis for our present work, while other research has focused on algorithms using
tensor slicing [9, 33, 26, 30] or on improving the efficiency of the so-called ttgt
algorithm for TC [16, 15, 29, 41], where input tensors A and B are T ransposed
(permuted) and then used in a standard Gemm algorithm, with the output then being
T ransposed and accumulated onto the tensor C. ttgt could be used to construct
a Strassen algorithm for TC by transposing subtensors into submatrices and vice
versa and using a matrix implementation of Strassen instead of GEMM. However,
we showed that this algorithm is essentially the same as our naive Strassen algorithm
(see section 4.3), which is often less efficient than the other algorithms that we have
implemented.

The gett algorithm [40] is a high-performance TC implementation similar in
many ways to the BLIS-based implementation by Matthews [32]. As in our cur-
rent implementation, formation of linear combinations of input subtensors of A and
B and output to multiple subtensors of C could be fused with the internal tensor
transposition and microkernel steps of gett. However, the implementation would be
restricted to regular subtensors rather than more general submatrices (see section 3),
which could have possible negative performance implications (e.g., false sharing).

8. Conclusions. We have presented what we believe to be the first paper to
demonstrate how to leverage Strassen’s algorithm for TC and have shown practical
performance speedup on single core, multicore, and distributed memory implemen-
tations. Using a block scatter matrix layout enables us to partition the matrix view
of the tensor, instead of the tensor itself, with automatic (implicit) tensor-to-matrix
transformation, and the flexibility to facilitate Strassen’s 2-D matrix partition to mul-
tidimensional tensor spaces. Fusing the matrix summation that must be performed
for Strassen and the transposition that must be conducted for TC with the packing
and microkernel operations inside high-performance implementation of GEMM avoids
extra workspace requirements and reduces the cost of additional memory movement.
We provided a performance model which can predict the speedup of the resulting
family of algorithms for different tensor shapes, sizes, and permutations, with enough
accuracy to reduce the search space to pick the right implementation. We evalu-
ated our families of implementations for various tensor sizes and shapes on synthetic
and real-world datasets, both observing significant speedups comparing to the base-
line (tblis) and naive implementations (naive Strassen), particularly for smaller
problem sizes (NIm , NJn , NPk

≈ 2kC , 4kC), and irregular shape (NPk
is much smaller

comparing to NIm , NJn). Together, this work demonstrates Strassen’s algorithm can
be applied for TC with practical performance benefit.

There are several avenues for future work:
• Higher-level tensor decomposition algorithms [24], such as Tucker decomposi-

tion, involve heavy use of TC. The impact of our performance improvements
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with Strassen’s algorithm for those algorithms is an interesting question. It
may be possible to leverage our performance model to determine the best
implementation for the tensor shape these algorithms require.

• So far, we target dense TC, which has numerous applications. However,
the structure of the tensor operands may be symmetric [5] or sparse [1],
which yields a number of new challenges, like more efficient storage or layout
format. How to explore those structure patterns and combine with Strassen’s
algorithm can be investigated.

• More levels of Strassen’s algorithm may lose precision due to numerical insta-
bility issues. It may be possible to combine with the techniques proposed in
Extended and Mixed Precision BLAS [27] to get higher speedup and maintain
precision.

• A number of recent papers explore practical implementations of Strassen-like
fast matrix multiplications [4, 19] and other variations of Strassen’s algorithm
[23]. How to extend fast matrix multiplication with different partition block
sizes for TC is an open question.

Source code availability. A number of implementations of the discussed
Strassen’s algorithm for tensor contraction are available under 3-clause (modified)
BSD license from https://github.com/flame/tblis-strassen.
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