
Strassen’s Algorithm Reloaded
Jianyu Huang∗, Tyler M. Smith∗†, Greg M. Henry‡, Robert A. van de Geijn∗†

∗Department of Computer Science and †Institute for Computational Engineering and Sciences,
The University of Texas at Austin, Austin, TX 78712

Email: jianyu,tms,rvdg@cs.utexas.edu
‡Intel Corporation, Hillsboro, OR 97124

Email: greg.henry@intel.com

Abstract—We dispel with “street wisdom” regarding the
practical implementation of Strassen’s algorithm for matrix-
matrix multiplication (DGEMM). Conventional wisdom: it is only
practical for very large matrices. Our implementation is practical
for small matrices. Conventional wisdom: the matrices being
multiplied should be relatively square. Our implementation is
practical for rank-k updates, where k is relatively small (a shape
of importance for libraries like LAPACK). Conventional wisdom:
it inherently requires substantial workspace. Our implementation
requires no workspace beyond buffers already incorporated
into conventional high-performance DGEMM implementations.
Conventional wisdom: a Strassen DGEMM interface must pass
in workspace. Our implementation requires no such workspace
and can be plug-compatible with the standard DGEMM inter-
face. Conventional wisdom: it is hard to demonstrate speedup
on multi-core architectures. Our implementation demonstrates
speedup over conventional DGEMM even on an Intel R© Xeon
PhiTM coprocessor1 utilizing 240 threads. We show how a dis-
tributed memory matrix-matrix multiplication also benefits from
these advances.

Index Terms—Strassen, numerical algorithm, performance
model, matrix multiplication, linear algebra library, BLAS.

I. INTRODUCTION

Strassen’s algorithm (STRASSEN) [1] for matrix-matrix
multiplication (DGEMM) has fascinated theoreticians and prac-
titioners alike since it was first published, in 1969. That paper
demonstrated that multiplication of n × n matrices can be
achieved in less than the O(n3) arithmetic operations required
by a conventional formulation. It has led to many variants that
improve upon this result [2], [3], [4], [5] as well as practical
implementations [6], [7], [8], [9]. The method can yield a
shorter execution time than the best conventional algorithm
with a modest degradation in numerical stability [10], [11],
[12] by only incorporating a few levels of recursion.

From 30,000 feet the algorithm can be described as shifting
computation with submatrices from multiplications to addi-
tions, reducing the O(n3) term at the expense of adding O(n2)
complexity. For current architectures, of greater consequence
is the additional memory movements that are incurred when
the algorithm is implemented in terms of a conventional
DGEMM provided by a high-performance implementation
through the Basic Linear Algebra Subprograms (BLAS) [13]
interface. A secondary concern has been the extra workspace
that is required. This simultaneously limits the size of problem

1Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the
U.S. and/or other countries.

that can be computed and makes it so an implementation is not
plug-compatible with the standard calling sequence supported
by the BLAS.

An important recent advance in the high-performance imple-
mentation of DGEMM is the BLAS-like Library Instantiation
Software (BLIS framework) [14], a careful refactoring of the
best-known approach to implementing conventional DGEMM
introduced by Goto [15]. Of importance to the present paper
are the building blocks that BLIS exposes, minor modifica-
tions of which support a new approach to implementating
STRASSEN. This approach changes data movement between
memory layers and can thus mitigate the negative impact of
the additional lower order terms incurred by STRASSEN. These
building blocks have similarly been exploited to improve upon
the performance of, for example, the computation of the
K-Nearest Neighbor [16] and Tensor Contraction [17], [18]
problem. The result is a family of STRASSEN implementations,
members of which attain superior performance depending on
the sizes of the matrices.

The resulting family improves upon prior implementations
of STRASSEN in a number of surprising ways:

• It can outperform classical DGEMM even for small square
matrices.

• It can achieve high performance for rank-k updates
(DGEMM with a small “inner matrix size”), a case of
DGEMM frequently encountered in the implementation of
libraries like LAPACK [19].

• It needs not require additional workspace.
• It can incorporate directly the multi-threading in tradi-

tional DGEMM implementations.
• It can be plug-compatible with the standard DGEMM

interface supported by the BLAS.
• It can be incorporated into practical distributed memory

implementations of DGEMM.
Most of these advances run counter to conventional wisdom
and are backed up by theoretical analysis and practical imple-
mentation.

II. STANDARD MATRIX-MATRIX MULTIPLICATION

We start by discussing naive computation of matrix-matrix
multiplication (DGEMM), how it is supported as a library rou-
tine by the Basic Linear Algebra Subprograms (BLAS) [13],
how modern implementations block for caches, and how that
implementation supports multi-threaded parallelization.



A. Computing C = αAB + C

Consider C = αAB + C, where C, A, and B are m × n,
m× k, and k × n matrices, respectively, and α is a scalar. If
the (i, j) entry of C, A, and B are respectively denoted by
ci,j , ai,j , and bi,j , then computing C = αAB+C is achieved
by

ci,j = α

k−1∑
p=0

ai,pbp,j + ci,j ,

which requires 2mnk floating point operations (flops).

B. Level-3 BLAS matrix-matrix multiplication

(General) matrix-matrix multiplication (GEMM) is supported
in the level-3 BLAS [13] interface as

DGEMM( transa, transb, m, n, k, alpha,
A, lda, B, ldb, beta, C, ldc )

where we focus on double precision arithmetic and data. This
call supports

C = αAB + βC, C = αATB + βC,
C = αABT + βC, and C = αATBT + βC

depending on the choice of transa and transb. In our
discussion we can assume β = 1 since C can always first
be multiplied by that scalar as a preprocessing step, which
requires only O(n2) flops. Also, by internally allowing both
a row stride and a column stride for A, B, and C (as the
BLIS framework does), transposition can be easily supported
by swapping these strides. It suffices then to consider C =
αAB + C.

C. Computing with submatrices

Important to our discussion is that we partition the matri-
ces and stage the matrix-multiplication as computations with
submatrices. For example, let us assume that m, n, and k are
all even and partition

C =

(
C00 C01

C10 C11

)
, A =

(
A00 A01

A10 A11

)
, B =

(
B00 B01

B10 B11

)
,

where Cij is m
2 ×

n
2 , Aij is m

2 ×
k
2 , and Bij is k

2 ×
n
2 . Then

C00 = α(A00B00 +A01B10) + C00

C01 = α(A00B01 +A01B11) + C01

C10 = α(A10B00 +A11B10) + C10

C11 = α(A10B01 +A11B11) + C11

computes C = αAB + C via eight multiplications and
eight additions with submatrices, still requiring approximately
2mnk flops.

D. The GotoBLAS algorithm for DGEMM

Figure 1(left) illustrates the way the GOTOBLAS [21] (pre-
decessor of OpenBLAS [22]) approach structures the blocking
for three layers of cache (L1, L2, and L3) when computing
C = AB+C, as implemented in BLIS. For details we suggest
the reader consult the papers on the GOTOBLAS DGEMM [15]
and BLIS [14]. In that figure, the indicated block sizes mC ,
nC , and kC are chosen so that submatrices fit in the various
caches while mR and nR relate to the size of contributions to

C that fits in registers. For details on how these are chosen,
see [14], [20].

Importantly,
• The row panels Bp that fit in the L3 cache2 are packed

into contiguous memory, yielding B̃p.
• Blocks Ai that fit in the L2 cache are packed into buffer
Ãi.

It is in part this packing that we are going to exploit as we
implement one or more levels of STRASSEN.

E. Multi-threaded implementation

BLIS exposes all the illustrated loops, requiring only the
micro-kernel to be optimized for a given architecture. In
contrast, in the GOTOBLAS implementation the micro-kernel
and the first two loops around it form an inner-kernel that is
implemented as a unit. As a result, the BLIS implementation
exposes five loops (two more than the GOTOBLAS imple-
mentation) that can be parallelized, as discussed in [23]. In
this work, we mimic the insights from that paper.

III. STRASSEN’S ALGORITHM

In this section, we present the basic idea and practical
considerations of STRASSEN, decomposing it into a combi-
nation of general operations that can be adapted to the high-
performance implementation of a traditional DGEMM.

A. The basic idea

It can be verified that the operations in Figure 2 also
compute C = αAB+C, requiring only seven multiplications
with submatrices. The computational cost is, approximately,
reduced from 2mnk flops to (7/8)2mnk flops, at the expense
of a lower order number of extra additions. Figure 2 describes
what we will call one-level STRASSEN.

B. Classic Strassen’s algorithm

Each of the matrix multiplications that computes an inter-
mediate result Mk can itself be computed with another level
of Strassen’s algorithm. This can then be repeated recursively.

If originally m = n = k = 2d, where d is an integer, then
the cost becomes

(7/8)
log2(n) 2n3 = nlog2(7/8)2n3 = 2n2.807 flops.

In this discussion, we ignored the increase in the total number
of extra additions.

C. Practical considerations

A high-performance implementation of a traditional matrix-
matrix multiplication requires careful attention to details re-
lated to data movements between memory layers, scheduling
of operations, and implementations at a very low level (of-
ten in assembly code). Practical implementations recursively
perform a few levels of STRASSEN until the matrices become
small enough so that a traditional high-performance DGEMM

2If an architecture does not have an L3 cache, this panel is still packed to
make the data contiguous and to reduce the number of TLB entries used.



1 

+=# 1 

L3#cache#
L2#cache#
L1#cache#
registers#

main#memory#
micro5kernel#

Update Cij  

mR 

+=#

nR 

kC 

1st#loop#around#micro5kernel#

mR 

+=#
kC 

nR 

Pack Ai→ Ai 
~ 

nR Ai 
~ Bp 

~ 
2nd#loop#around#micro5kernel#

Ci 

3rd#loop#around#micro5kernel#

+=#

Pack Bp  → Bp 
~ 

Bp 
~ mC 

Ci Ai mC 

4th#loop#around#micro5kernel#

+=#
kC Ap Bp Cj 

kC 

+=#
nC nC 

5th#loop#around#micro5kernel#

A B Cj 

nC nC 

+=#
nC nC 

5th#loop#around#micro5kernel#

Y W Dj 
X Vj Cj 

4th#loop#around#micro5kernel#

+=#
kC Yp Wp Dj 

kC 

Xp Vp Cj 

3rd#loop#around#micro5kernel#

+=#

Pack Vp + Wp → Bp 
~ 

Bp 
~ mC 

Di Yi 
mC 

Ci Xi 

mR 

+=#
kC 

nR 

Pack Xi + Yi→ Ai 
~ 

nR Ai 
~ Bp 

~ 
2nd#loop#around#micro5kernel#

Ci 

Di 

mR 

+=#

nR 

kC 

1st#loop#around#micro5kernel#

1 

+=# 1 

L3#cache#
L2#cache#
L1#cache#
registers#

main#memory#
micro5kernel#

Update Cij , Dij  

nC nC 

Fig. 1. Left: Illustration (adapted from [20] with permission of the authors) of the BLIS implementation of the GOTOBLAS DGEMM algorithm. All computation
is cast in terms of a micro-kernel that is highly optimized. Right: modification that implements the representative computation M = (X+Y )(V +W );C+=
M ;D+=M of general operation (1).

M0=α(A00 +A11)(B00 +B11); C00+=M0;C11+=M0;
M1=α(A10 +A11)B00; C10+=M1;C11−=M1;
M2=αA00(B01 −B11); C01+=M2;C11+=M2;
M3=αA11(B10 −B00); C00+=M3;C10+=M3;
M4=α(A00 +A01)B11; C01+=M4;C00−=M4;
M5=α(A10 −A00)(B00 +B01); C11+=M5;
M6=α(A01 −A11)(B10 +B11); C00+=M6;

Fig. 2. All operations for one-level STRASSEN. Note that each row is a
special case of general operation (1).

is faster. At that point, the recursion stops and a high-
performance DGEMM is used for the subproblems. In prior
implementations, the switch point is usually as large as 2000
for double precision square matrices on a single core of an
x86 CPU [8], [9]. We will see that, for the same architecture,
one of our implementations has a switch point as small as 500
(Figure 5).

In an ordinary matrix-matrix multiplication, three matrices

must be stored, for a total of 3n2 floating point numbers
(assuming all matrices are n×n). The most naive implemen-
tation of one-level STRASSEN requires an additional seven
submatrices of size n

2 ×
n
2 (for M0 through M6) and ten

matrices of size n
2 ×

n
2 for A00 + A11, B00 + B11, etc. A

careful ordering of the computation can reduce this to two
matrices [24]. We show that the computation can be organized
so that no temporary storage beyond that required for a high-
performance traditional DGEMM is needed. In addition, it is
easy to parallelize for multi-core and many-core architectures
with our approach, since we can adopt the same parallel
scheme advocated by BLIS.

The general case where one or more dimensions are not a
convenient multiple of a power of two leads to the need to ei-
ther pad matrices or to treat a remaining “fringe” carefully [7].
Traditionally, it is necessary to pad m, n, and k to be even.
In our approach this can be handled internally by padding Ãi

and B̃p, and by using tiny (mR×nR) buffers for C along the
fringes (much like the BLIS framework does).



M0 = α(A0,0+A2,2+A1,1+A3,3)(B0,0 +B2,2+B1,1+B3,3);
C0,0+=M0; C1,1+=M0; C2,2+=M0;C3,3+=M0;

M1 = α(A1,0+A3,2+A1,1+A3,3)(B0,0 +B2,2);
C1,0+=M1; C1,1−=M1; C3,2+=M1;C3,3−=M1;

M2 = α(A0,0+A2,2)(B0,1+B2,3+B1,1 +B3,3);
C0,1+=M2; C1,1+=M2; C2,3+=M2;C3,3+=M2;

M3 = α(A1,1+A3,3)(B1,0+B3,2+B0,0 +B2,2);
C0,0+=M3; C1,0+=M3; C2,2+=M3;C3,2+=M3;

M4 = α(A0,0+A2,2+A0,1+A2,3)(B1,1 +B3,3);
C0,0−=M4; C0,1+=M4; C2,2−=M4;C2,3+=M4;

M5 = α(A1,0+A3,2+A0,0+A2,2)(B0,0 +B2,2+B0,1+B2,3);
C1,1+=M5; C3,3+=M5;

M6 = α(A0,1+A2,3+A1,1+A3,3)(B1,0 +B3,2+B1,1+B3,3);
C0,0+=M6; C2,2+=M6;

M7 = α(A2,0+A2,2+A3,1+A3,3)(B0,0 +B1,1);
C2,0+=M7; C3,1+=M7; C2,2−=M7;C3,3−=M7;

...
M42 = α(A0,2+A2,2+A1,3+A3,3)(B2,0 +B2,2+B3,1+B3,3);

C0,0+=M42;C1,1+=M42;
M43 = α(A1,2+A3,2+A1,3+A3,3)(B2,0 +B2,2);

C1,0+=M43;C1,1−=M43;
M44 = α(A0,2+A2,2)(B2,1+B2,3+B3,1 +B3,3);

C0,1+=M44;C1,1+=M44;
M45 = α(A1,3+A3,3)(B3,0+B3,2+B2,0 +B2,2);

C0,0+=M45;C1,0+=M45;
M46 = α(A0,2+A2,2+A0,3+A2,3)(B3,1 +B3,3);

C0,0−=M46;C0,1+=M46;
M47 = α(A1,2+A3,2+A0,2+A2,2)(B2,0 +B2,2+B2,1+B2,3);

C1,1+=M47;
M48 = α(A0,3+A2,3+A1,3+A3,3)(B3,0 +B3,2+B3,1+B3,3);

C0,0+=M48;

Fig. 3. Representative computations for two levels of Strassen.

D. One-level STRASSEN reloaded

The operations summarized in Figure 2 are all special cases
of

M = α(X+δY )(V +εW ); C+= γ0M ; D+= γ1M ; (1)

for appropriately chosen γ0, γ1, δ, ε ∈ {−1, 0, 1}. Here, X and
Y are submatrices of A, V and W are submatrices of B, and
C and D are submatrices of original C.

Let us focus on how to modify the algorithm illustrated
in Figure 1(left) in order to accommodate the representative
computation

M = (X + Y )(V +W );C+=M ;D+=M.

As illustrated in Figure 1(right), the key insight is that the
additions of matrices V + W can be incorporated in the
packing into buffer B̃p and the additions of matrices X + Y

in the packing into buffer Ãi. Also, when a small block
of (X + Y )(V + W ) is accumulated in registers it can be
added to the appropriate parts of both C and D, multiplied
by αγ0 and αγ1, as needed, inside a modified micro-kernel.
This avoids multiple passes over the various matrices, which
would otherwise add a considerable overhead from memory
movements.

E. Two-level STRASSEN reloaded
Let

C =

 C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3

 , A =

 A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

 ,

and B =

 B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

 ,

where Ci,j is m
4 ×

n
4 , Ai,p is m

4 ×
k
4 , and Bp,j is k

4 ×
n
4 . Then

it can be verified that the computations in Figure 3 compute
C = αAB + C. The operations found there can be cast as
special cases of

M = α(X0 + δ1X1 + δ2X2 + δ3X3)×
(V0 + ε1V1 + ε2V2 + ε3V3);

C0+= γ0M ;C1+= γ1M ;C2+= γ2M ;C3+= γ3M

by appropriately picking γi, δi, εi ∈ {−1, 0, 1}. Importantly,
the computation now requires 49 multiplications for submatri-
ces as opposed to 64 for a conventional DGEMM.

To extend the insights from Section III-D so as to integrate
two-level STRASSEN into the BLIS DGEMM implementation,
we incorporate the addition of up to four submatrices of A
and B, the updates of up to four submatrices of C inside the
micro-kernel, and the tracking of up to four submatrices in the
loops in BLIS.

F. Additional levels

A pattern now emerges. The operation needed to integrate
k levels of STRASSEN is given by

M = α
(∑lX−1

s=0 δsXs

)(∑lV −1
t=0 εtVt

)
;

Cr+= γrM for r = 0, . . . , lC − 1.
(2)

For each number, l, of levels of STRASSEN that are integrated,
a table can then be created that captures all the computations
to be executed.

IV. IMPLEMENTATION AND ANALYSIS

We now discuss the details of how we adapt the high-
performance GOTOBLAS approach to these specialized op-
erations to yield building blocks for a family of STRASSEN
implementations. Next, we also give a performance model for
comparing members of this family.

A. Implementations

We implement a family of algorithms for up to two levels3

of STRASSEN, building upon the BLIS framework.

3We can support three or more levels of STRASSEN, by modifying
the packing routines and the micro-kernel to incorporate more summands.
However, the crossover point for the three-level Strassen to outperform all
one/two-level STRASSEN implementations is very large (∼ 10000 for square
matrices). There are also concerns regarding to numerical stability issues with
many levels of recursions. So we don’t go beyond two levels in this paper.



Building blocks: The BLIS framework provides three prim-
itives for composing DGEMM: a routine for packing Bp into
B̃p, a routine for packing Ai into Ãi, and a micro-kernel
for updating an mR × nR submatrix of C. The first two are
typically written in C while the last one is typically written in
(inlined) assembly code.

To implement a typical operation given in (2),
• the routine for packing Bp is modified to integrate the

addition of multiple matrices Vt into packed buffer B̃p;
• the routine for packing Ai is modified to integrate the

addition of multiple matrices Xs into packed buffer Ãi;
and

• the micro-kernel is modified to integrate the addition of
the result to multiple submatrices.

Variations on a theme: The members of our family of
STRASSEN implementations differ by how many levels of
STRASSEN they incorporate and which of the above described
modified primitives they use:

• Naive Strassen: A traditional implementation with tem-
porary buffers.

• AB Strassen: Integrates the addition of matrices into
the packing of buffers Ãi and B̃p but creates explicit
temporary buffers for matrices M .

• ABC Strassen: Integrates the addition of matrices into
the packing of buffers Ãi and B̃p and the addition of
the result of the micro-kernel computation to multiple
submatrices of C. For small problem size k this version
has the advantage over AB Strassen that the temporary
matrix M is not moved in and out of memory multiple
times. The disadvantage is that for large k the submatrices
of C to which contributions are added are moved in and
out of memory multiple times instead.

B. Performance Model

In order to compare the performance of the traditional
BLAS DGEMM routine and the various implementations of
STRASSEN, we define the effective GFLOPS metric for m ×
k × n matrix multiplication, similar to [9], [25], [26]:

effective GFLOPS =
2 ·m · n · k

time (in seconds)
· 10−9. (3)

We next derive a model to predict the execution time T
and the effective GFLOPS of the traditional BLAS DGEMM
and the various implementations of STRASSEN. Theoretical
predictions allow us to compare and contrast different imple-
mentation decisions, help with performance debugging, and (if
sufficiently accurate) can be used to choose the right member
of the family of implementations as a function of the number
of threads used and/or problem size.

Assumption: Our performance model assumes that the un-
derlying architecture has a modern memory hierarchy with fast
caches and relatively slow main memory (DRAM). We assume
the latency for accessing the fast caches can be ignored (either
because it can be overlapped with computation or because
it can be amortized over sufficient computation) while the
latency of loading from main memory is exposed. For memory

type τ DGEMM one-level two-level
T×
a - τa 2mnk 7× 2m

2
n
2

k
2

49× 2m
4

n
4

k
4

T
A+
a - τa - 5× 2m

2
k
2

95× 2m
4

k
4

T
B+
a - τa - 5× 2 k

2
n
2

95× 2 k
4

n
4

T
C+
a - τa - 12× 2m

2
n
2

154× 2m
4

n
4

T
A×
m r τb mkd n

nc
e m

2
k
2
dn/2

nc
e m

4
k
4
dn/4

nc
e

T
Ã×
m w τb mkd n

nc
e m

2
k
2
dn/2

nc
e m

4
k
4
dn/4

nc
e

T
B×
m r τb nk n

2
k
2

n
4

k
4

T
B̃×
m w τb nk n

2
k
2

n
4

k
4

T
C×
m (*) r/w τb 2mnd k

kc
e 2m

2
n
2
d k/2

kc
e 2m

4
n
4
d k/4

kc
e

T
A+
m r/w τb mk m

2
k
2

m
4

k
4

T
B+
m r/w τb nk n

2
k
2

n
4

k
4

T
C+
m r/w τb mn m

2
n
2

m
4

n
4

N
A×
m N

B×
m N

C×
m N

A+
m N

B+
m N

C+
m

DGEMM 1 1 1 - - -

one-level
ABC 12 12 12 - - -
AB 12 12 7 - - 36

Naive 7 7 7 19 19 36

two-level
ABC 194 194 154 - - -
AB 194 194 49 - - 462

Naive 49 49 49 293 293 462

Fig. 4. The top table shows theoretical run time breakdown analysis of
BLAS DGEMM and various implementations of STRASSEN. The time shown
in the first column for DGEMM, one-level STRASSEN, two-level STRASSEN
can be computed separately by multiplying the parameter in τ column with the
number in the corresponding entries. Due to the software prefetching effects,
the row marked with (∗) needs to be multiplied by an additional parameter
λ ∈ [0.5, 1], which denotes the prefetching efficiency. λ is adjusted to match
BLIS DGEMM performance. The bottom table shows the coefficient NX

m
mapping table for computing Tm in the performance model.

store operations, our model assumes that a lazy write-back
policy guarantees the time for storing into fast caches can
be hidden. The slow memory operations for BLAS DGEMM
and the various implementation of STRASSEN consist of three
parts: (1) memory packing in (adapted) DGEMM routine; (2)
reading/writing the submatrices of C in (adapted) DGEMM
routine; and (3) reading/writing of the temporary buffer that
are part of Naive Strassen and AB Strassen, outside (adapted)
DGEMM routine. Based on these assumptions, the execution
time is dominated by the arithmetic operations and the slow
memory operations.

Notation: Parameter τa denotes the time (in seconds) of
one arithmetic (floating point) operation, i.e., the reciprocal
of the theoretical peak GFLOPS of the system. Parameter τb
(bandwidth, memory operation) denotes the amortized time
(in seconds) of one unit (one double precision floating point
number, or eight bytes) of contiguous data movement from
DRAM to cache. In practice,

τb =
8(Bytes)

bandwidth (in GBytes/s)
· 10−9.

For single core, we need to further multiply it by the number
of channels.

The total execution time (in seconds), T , is broken down
into the time for arithmetic operations, Ta, and memory



0 1 2 3 4 5 6 7 8 9 10 11 12

m=k=n ×10
3

20

25

28.32

30

33

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

m=k=n, 1 core, modeled

Modeled DGEMM
Modeled One-level ABC Strassen
Modeled Two-level ABC Strassen
Modeled One-level AB Strassen
Modeled Two-level AB Strassen
Modeled One-level Naive Strassen
Modeled Two-level Naive Strassen

0 1 2 3 4 5 6 7 8 9 10 11 12

m=k=n ×10
3

20

25

28.32

30

33

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

m=k=n, 1 core

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen
Two-level ABC Strassen
One-level AB Strassen
Two-level AB Strassen
One-level Naive Strassen
Two-level Naive Strassen

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k ×10
3

20

25

28.32

30

33

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

m=n=16000, k varies, 1 core, modeled

Modeled DGEMM
Modeled One-level ABC Strassen
Modeled Two-level ABC Strassen
Modeled One-level AB Strassen
Modeled Two-level AB Strassen
Modeled One-level Naive Strassen
Modeled Two-level Naive Strassen

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k ×10
3

20

25

28.32

30

33

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

m=n=16000, k varies, 1 core

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen
Two-level ABC Strassen
One-level AB Strassen
Two-level AB Strassen
One-level Naive Strassen
Two-level Naive Strassen

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m=n ×10
3

20

25

28.32

30

33

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

k=1024, m=n vary, 1 core, modeled

Modeled DGEMM
Modeled One-level ABC Strassen
Modeled Two-level ABC Strassen
Modeled One-level AB Strassen
Modeled Two-level AB Strassen
Modeled One-level Naive Strassen
Modeled Two-level Naive Strassen

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m=n ×10
3

20

25

28.32

30

33

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

k=1024, m=n vary, 1 core

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen
Two-level ABC Strassen
One-level AB Strassen
Two-level AB Strassen
One-level Naive Strassen
Two-level Naive Strassen

Fig. 5. Performance of the various implementations on an Intel R© Xeon R© E5 2680 v2 (Ivybridge) processor (single core). Left: modeled performance. Right:
actual performance. The range of the y-axis does not start at 0 to make the graphs more readable and 28.32 marks theoretical peak performance for this
architecture.



operations:
T = Ta + Tm. (4)

Arithmetic Operations: We break down Ta into separate
terms:

Ta = T×
a + TA+

a + TB+
a + TC+

a , (5)

where T×
a is the arithmetic time for submatrix multiplication,

and TA+
a , TB+

a , TC+
a denote the arithmetic time of extra addi-

tions with submatrices of A, B, C, respectively. For DGEMM
since there are no extra additions, Ta = 2mnk · τa. For one-
level STRASSEN, Ta is comprised of 7 submatrix multiplica-
tions, 5 extra additions with submatrices of A, 5 extra additions
with submatrices of B, and 12 extra additions with submatrices
of C. Therefore, Ta = (1.75mnk+2.5mk+2.5kn+6mn)·τa.
Note that the matrix addition actually involves 2 floating
point operations for each entry because they are cast as FMA
instructions. Similar analyses can be applied to compute Ta
of a two-level STRASSEN implementation. A full analysis is
summarized in Figure 4.

Memory Operations: The total data movement overhead is
determined by both the original matrix sizes m, n, k, and block
sizes mC , nC , kC in our implementation Figure 1(right). We
characterize each memory operation term in Figure 4 by its
read/write type and the amount of memory (one unit=double
precision floating number size=eight bytes) involved in the
movement. We decompose Tm into

Tm = NA×
m · TA×

m +NB×
m · TB×

m +NC×
m · TC×

m

+NA+
m · TA+

m +NB+
m · TB+

m +NC+
m · TC+

m , (6)

where T
A×
m , TB×

m are the data movement time for reading
from submatrices of A, B, respectively, for memory packing
in (adapted) DGEMM routine; TC×

m is the data movement time
for loading and storing submatrices of C in (adapted) DGEMM

routine; TA+
m , TB+

m , TC+
m are the data movement time for

loading or storing submatrices of A, B, C, respectively, related
to the temporary buffer as part of Naive Strassen and AB
Strassen, outside (adapted) DGEMM routine; the NX

m s denote
the corresponding coefficients, which are also tabulated in
Figure 4.

All write operations (T Ã×
m , T B̃×

m for storing submatrices of
A, B, respectively, into packing buffers) are omitted because
our assumption of lazy write-back policy with fast caches.
Notice that memory operations can recur multiple times
depending on the loop in which they reside. For instance,
for two-level STRASSEN, TC×

m = 2dk/4kc
em4

n
4 τb denotes the

cost of reading and writing the m
4 ×

n
4 submatrices of C

as intermediate result inside the micro-kernel. This is a step
function proportional to k, because submatrices of C are
used to accumulate the rank-k update in the 5th loop in
Figure 1(right).

C. Discussion

From the analysis summarized in Figure 4 we can make
predications about the relative performance of the various
implementations. It helps to also view the predictions as

graphs, which we give in Figure 5, using parameters that
capture the architecture described in Section V-A.

• Asymptotically, the two-level STRASSEN implementa-
tions outperform corresponding one-level STRASSEN im-
plementations, which in turn outperform the traditional
DGEMM implementation.

• The graph for m = k = n, 1 core, shows that for
smaller square matrices, ABC Strassen outperforms
AB Strassen, but for larger square matrices this trend
reverses. This holds for both one-level and two-level
STRASSEN. The reason is that, for small k, ABC
Strassen reduced the number of times the temporary
matrix M needs to be brought in from memory to be
added to submatrices of C. For large k, it increases the
number of times the elements of those submatrices of C
themselves are moved in and out of memory.

• The graph for m = n = 16000, k varies, 1 core, is par-
ticularly interesting: it shows that for k equal to the
appropriate multiple of kC (k = 2kC for one-level
and k = 4kC for two-level) ABC Strassen performs
dramatically better than the other implementations, as
expected.

The bottom line: depending on the problem size, a different
implementation may have its advantages.

V. PERFORMANCE EXPERIMENTS

We give details on the performance experiments for our
implementations. The current version of STRASSEN DGEMM
is designed for the Intel R© Sandy-Bridge/Ivy-Bridge proces-
sor and Intel R© Xeon PhiTM coprocessor (MIC Architecture,
KNC). In addition, we incorporate our implementations in a
distributed memory DGEMM.

A. Single node experiments

Implementation: The implementations are in C, utilizing
SSE2 and AVX intrinsics and assembly, compiled with the
Intel R© C compiler version 15.0.3 with optimization flag -O3.
In addition, we compare against the standard BLIS imple-
mentation (Version 0.1.8) from which our implementations are
derived as well as Intel R© MKL’s DGEMM (Version 11.2.3)
[27].

Target architecture: We measure the CPU performance
results on the Maverick system at the Texas Advanced Com-
puting Center (TACC). Each node of that system consists of
a dual-socket (10 cores/socket) Intel R© Xeon R© E5-2680 v2
(Ivy Bridge) processors with 12.8 GB/core of memory (Peak
Bandwidth: 59.7 GB/s with four channels) and a three-level
cache: 32 KB L1 data cache, 256 KB L2 cache and 25.6
MB L3 cache. The stable CPU clockrate is 3.54 GHz when
a single core is utilized (28.32 GFLOPS peak, marked in the
graphs) and 3.10 GHz when five or more cores are in use
(24.8 GLOPS/core peak). To set thread affinity and to ensure
the computation and the memory allocation all reside on the
same socket, we use KMP_AFFINITY=compact.

We choose the parameters nR = 4, mR = 8, kC = 256,
nC = 4096 and mC = 96. This makes the size of the



0 1 2 3 4 5 6 7 8 9 10 11 12

m=k=n ×10
3

75

100

124

140

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

m=k=n, 5 core

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen
Two-level ABC Strassen
One-level AB Strassen
Two-level AB Strassen
One-level Naive Strassen
Two-level Naive Strassen

0 1 2 3 4 5 6 7 8 9 10 11 12

m=k=n ×10
3

100

150

200

248

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

m=k=n, 10 core

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen
Two-level ABC Strassen
One-level AB Strassen
Two-level AB Strassen
One-level Naive Strassen
Two-level Naive Strassen

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k ×10
3

75

100

124

140

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

m=n=16000, k varies, 5 core

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen
Two-level ABC Strassen
One-level AB Strassen
Two-level AB Strassen
One-level Naive Strassen
Two-level Naive Strassen

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k ×10
3

100

150

200

248

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

m=n=16000, k varies, 10 core

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen
Two-level ABC Strassen
One-level AB Strassen
Two-level AB Strassen
One-level Naive Strassen
Two-level Naive Strassen

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m=n ×10
3

75

100

124

140

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

k=1024, m=n vary, 5 core

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen
Two-level ABC Strassen
One-level AB Strassen
Two-level AB Strassen
One-level Naive Strassen
Two-level Naive Strassen

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m=n ×10
3

100

150

200

248

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

k=1024, m=n vary, 10 core

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen
Two-level ABC Strassen
One-level AB Strassen
Two-level AB Strassen
One-level Naive Strassen
Two-level Naive Strassen

Fig. 6. Performance of the various implementations on an Intel R© Xeon R© E5 2680 v2 (Ivybridge) processor (five and ten cores). Left: 5 core. Right: 10
core. The range of the y-axis does not start at 0 to make the graphs more readable.



packing buffer Ãi 192 KB and B̃p 8192 KB, which then fit
the L2 cache and L3 cache, respectively. These parameters
are consistent with parameters used for the standard BLIS
DGEMM implementation for this architecture.

Each socket consists of 10 cores, allowing us to also perform
multi-threaded experiments. Parallelization is implemented
mirroring that described in [23], using OpenMP directives that
parallelize the 3rd loop around the micro-kernel in Figure 1.

Results: Results when using single core are presented in
Figure 5 (right column). As expected, eventually two-level
AB Strassen performs best, handily beating conventional
DGEMM. The exception is the case where k is fixed to equal
1024 = 4× kC , which is the natural blocking size for a two-
level STRASSEN based on our ideas. For those experiments
ABC Strassen wins out, as expected. These experiments help
validate our model.

Figure 6 reports results for five and ten cores, all within
the same socket. We do not report results for twenty cores
(two sockets), since this results in a substantial performance
reduction for all our implementations, including the standard
BLIS DGEMM, relative to the MKL DGEMM. This exposes a
performance bug4 in BLIS that has been reported.

When using many cores, memory bandwidth contention
affects the performance of the various STRASSEN implemen-
tations, reducing the benefits relative to a standard DGEMM
implementation.

B. Many-core experiments

To examine whether the techniques scale to a large number
of cores, we port our implementation of one-level ABC
Strassen to the Intel R© Xeon PhiTM coprocessor.

Implementation: The implementations of ABC Strassen
are in C and AVX512 intrinsics and assembly, compiled with
the Intel R© C compiler version 15.0.2 with optimization flag
-mmic -O3. The BLIS and ABC Strassen both parallelize
the 2nd and 3rd loop around the micro-kernel, as described
for BLIS in [23].

Target architecture: We run the Xeon Phi performance
experiments on the SE10P Coprocessor incorporated into
nodes of the Stampede system at TACC. This coprocessor has
a peak performance of 1056 GFLOPS (for 60 cores with 240
threads used by BLIS) and 8 GB of GDDR5 DRAM with a
peak bandwidth of 352 GB/s. It has 512 KB L2 cache, but no
L3 cache.

We choose the parameters nR = 8, mR = 30, kC = 240,
nC = 14400 and mC = 120. This makes the size of the
packing buffer Ãi 225 KB and B̃p 27000 KB, which fits L2
cache and main memory separately (no L3 cache on Xeon
Phi). These choices are consistent with those used by BLIS
for this architecture.

Results: As illustrated in Figure 7, relative to the BLIS
DGEMM implementation, the one-level ABC Strassen shows a
nontrivial improvement for a rank-k update with a fixed (large)

4In the distributed memory experiments, we overcome this NUMA issue by
running one MPI process per socket to demonstrate the performance results
on both sockets (20 cores) of each node.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m=k=n ×10
3

0

100

200

300

400

500

600

700

800

900

1000

1056

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

m=k=n vary

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen

0 1 2 3 4 5 6 7 8 9 10

k ×10
3

0

100

200

300

400

500

600

700

800

900

1000

1056

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

m=n=15120, k varies

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen

0 2 4 6 8 10 12 14 16 18 20

m=n ×10
3

0

100

200

300

400

500

600

700

800

900

1000

1056

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)

k=480, m=n vary

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen

Fig. 7. Performance of one-level ABC Strassen, BLIS, and MKL, on an
Intel R© Xeon PhiTM (KNC) coprocessor (for 60 cores with 240 threads). The
performance results are sampled such that k is a multiple of 480 = 2× kC .



matrix C (the graph for m = n = 15120, k varies). While the
BLIS implementation on which our implementation of ABC
Strassen is based used to be highly competitive with MKL’s
DGEMM (as reported in [23]), recent improvements in that
library demonstrate that the BLIS implementation needs an
update. We do not think there is a fundamental reason why
our observations cannot be used to similarly accelerate MKL’s
DGEMM.

C. Distributed memory experiments
Finally, we demonstrate how the ABC Strassen imple-

mentation can be used to accelerate a distributed memory
implementation of DGEMM.

Implementation: We implement the Scalable Universal Ma-
trix Multiplication Algorithm (SUMMA) [28] with MPI. This
algorithm distributes the algorithm to a mesh of MPI processes
using a 2D block cyclic distribution. The multiplication is
broken down into a sequence of rank-b updates,

C := AB + C =
(
A0 · · · AK−1

) B0

...
BK−1

+ C

= A0B0 + · · ·+AK−1BK−1 + C

where each Ap consists of (approximately) b columns and
each Bp consists of (approximately) b rows. For each rank-b
update Ap is broadcast within rows of the mesh and Bp is
broadcast within columns of the mesh, after which locally a
rank-b update with the arriving submatrices is performed to
update the local block of C.

Target architecture: The distributed memory experiments
are performed on the same machine described in Section V-A,
using the mvapich2 version 2.1 [29] implementation of MPI.
Each node has two sockets, and each socket has ten cores.

Results: Figure 8 reports weak scalability on up to 32 nodes
(64 sockets, 640 cores). For these experiments we choose the
MPI mesh of processes to be square, with one MPI process
per socket, and attained thread parallelism among the ten cores
in a socket within BLIS, MKL, or any of our STRASSEN
implementations.

It is well-known that the SUMMA algorithm is weakly
scalable in the sense that efficiency essentially remains con-
stant if the local memory dedicated to matrices A, B, C,
and temporary buffers is kept constant. For this reason, the
local problem size is fixed to equal m = k = n = 16000 so
that the global problem becomes m = k = n = 16000 × N
when an N ×N mesh of sockets (MPI processes) is utilized.
As expected, the graph shows that the SUMMA algorithm is
weakly scalable regardless of which local DGEMM algorithm
is used. The local computation within the SUMMA algorithm
matches the shape for which ABC Strassen is a natural
choice when the rank-k updates are performed with b = 1024.
For this reason, the one-level and two-level ABC Strassen
implementations achieve the best performance.

What this experiment shows is that the benefit of using our
STRASSEN implementations can be easily transferred to other
algorithms that are rich in large rank-k updates.

1 4 16 36 64

N×N

0

50

100

150

200

248

E
ff

e
c
ti
v
e

 G
F

L
O

P
S

 (
2
·
m
·
n
·
k
/t

im
e

)/
S

o
c
k
e

t

m=k=n=16000·N on N×N MPI mesh
1 MPI process per socket

BLIS DGEMM
MKL DGEMM
One-level ABC Strassen
Two-level ABC Strassen
One-level AB Strassen
Two-level AB Strassen
One-level Naive Strassen
Two-level Naive Strassen

Fig. 8. Performance of the various implementations on distributed memory
(weak scalability).

VI. CONCLUSION

We have presented novel insights into the implementa-
tions of STRASSEN that greatly reduce overhead that was
inherent in previous formulations and had been assumed
to be insurmountable. These insights have yielded a family
of algorithms that outperform conventional high-performance
implementations of DGEMM as well as naive implementa-
tions. We develop a model that predicts the run time of
the various implementations. Components that are part of
the BLIS framework for implementing BLAS-like libraries
are modified to facilitate implementation. Implementations
and performance experiments are presented that verify the
performance model and demonstrate performance benefits for
single-core, multi-core, many-core, and distributed memory
parallel implementations. Together, this advances more than
45 years of research into the theory and practice of Strassen-
like algorithms.

Our analysis shows that the ABC Strassen implementation
fulfills our claim that STRASSEN can outperform classical
DGEMM for small matrices and small k while requiring no
temporary buffers beyond those already internal to high-
performance DGEMM implementations. The AB Strassen im-
plementation becomes competitive once k is larger. It only
requires a m

2L
× n

2L
temporary matrix for an L-level STRASSEN.

A number of avenues for further research and development
naturally present themselves.

• The GotoBLAS approach for DGEMM is also the ba-
sis for high-performance implementations of all level-3
BLAS [30] and the BLIS framework has been used to
implement these with the same micro-kernel and mod-
ifications of the packing routines that support DGEMM.
This presents the possibility of creating Strassen-like
algorithms for some or all level-3 BLAS.



• Only ABC Strassen has been implemented for the Intel R©

Xeon PhiTM (KNC) coprocessor. While this demonstrates
that parallelism on many-core architectures can be ef-
fectively exploited, a more complete study needs to be
pursued. Also, the performance improvements in MKL
for that architecture need to be duplicated in BLIS and/or
the techniques incorporated into the MKL library.

• Most of the blocked algorithms that underlie LAPACK
and ScaLAPACK [31] cast computation in terms of rank-
k updates. It needs to be investigated how the ABC
Strassen implementation can be used to accelerate these
libraries.

• Distributed memory implementations of Strassen’s algo-
rithms have been proposed that incorporate several levels
of Strassen before calling a parallel SUMMA or other dis-
tributed memory parallel DGEMM implementation [25].
On the one hand, the performance of our approach that
incorporates STRASSEN in the local DGEMM needs to be
compared to these implementations. On the other hand, it
may be possible to add a local STRASSEN DGEMM into
these parallel implementations. Alternatively, the required
packing may be incorporated into the communication of
the data.

• A number of recent papers have proposed multi-threaded
parallel implementations that compute multiple submatri-
ces Mi in parallel [8]. Even more recently, new practical
Strassen-like algorithms have been proposed together
with their multi-threaded implementations [9]. How our
techniques compare to these and whether they can be
combined needs to be pursued. It may also be possible
to use our cost model to help better schedule this kind of
task parallelism.

These represent only a small sample of new possible direc-
tions.

ACKNOWLEDGMENTS

This work was sponsored in part by the National Science
Foundation grants ACI-1148125/1340293, CCF-1218483; by
Intel Corporation through an Intel R© Parallel Computing Cen-
ter. Access to the Maverick and Stampede supercomputers
administered by TACC is gratefully acknowledged. We thank
Field Van Zee, Chenhan Yu, Devin Matthews, and the rest of
the SHPC team (http://shpc.ices.utexas.edu) for
their supports.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math.,
vol. 13, pp. 354–356, 1969.

[2] S. Winograd, “On multiplication of 2×2 matrices,” Linear algebra and
its applications, vol. 4, no. 4, pp. 381–388, 1971.

[3] D. Bini, M. Capovani, F. Romani, and G. Lotti, “O (n2.7799) complexity
for n × n approximate matrix multiplication,” Information processing
letters, vol. 8, no. 5, pp. 234–235, 1979.

[4] A. Schönhage, “Partial and total matrix multiplication,” SIAM Journal
on Computing, vol. 10, no. 3, pp. 434–455, 1981.

[5] A. V. Smirnov, “The bilinear complexity and practical algorithms for
matrix multiplication,” Computational Mathematics and Mathematical
Physics, vol. 53, no. 12, pp. 1781–1795, 2013. [Online]. Available:
http://dx.doi.org/10.1134/S0965542513120129

[6] C. Douglas, M. Heroux, G. Slishman, and R. Smith, “GEMMW - a
portable level 3 BLAS Winograd variant of Strassen’s matrix-matrix
multiplication algorithm,” J. Computational Physics, pp. 1–10, 1994.

[7] S. Huss-Lederman, E. M. Jacobson, A. Tsao, T. Turnbull, and
J. R. Johnson, “Implementation of Strassen’s algorithm for matrix
multiplication,” in Proceedings of the 1996 ACM/IEEE Conference
on Supercomputing, ser. Supercomputing ’96. Washington, DC,
USA: IEEE Computer Society, 1996. [Online]. Available: http:
//dx.doi.org/10.1145/369028.369096

[8] P. D’Alberto, M. Bodrato, and A. Nicolau, “Exploiting parallelism
in matrix-computation kernels for symmetric multiprocessor systems:
Matrix-multiplication and matrix-addition algorithm optimizations by
software pipelining and threads allocation,” ACM Trans. Math. Softw.,
vol. 38, no. 1, pp. 2:1–2:30, December 2011. [Online]. Available:
http://doi.acm.org/10.1145/2049662.2049664

[9] A. R. Benson and G. Ballard, “A framework for practical parallel
fast matrix multiplication,” in Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP 2015. New York, NY, USA: ACM, 2015, pp. 42–53.

[10] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Philadelphia, PA, USA: SIAM, 2002.

[11] J. Demmel, I. Dumitriu, O. Holtz, and R. Kleinberg, “Fast matrix
multiplication is stable,” Numerische Mathematik, vol. 106, no. 2, pp.
199–224, 2007.

[12] G. Ballard, A. R. Benson, A. Druinsky, B. Lipshitz, and O. Schwartz,
“Improving the numerical stability of fast matrix multiplication
algorithms,” CoRR, vol. abs/1507.00687, 2015. [Online]. Available:
http://arxiv.org/abs/1507.00687

[13] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, “A set of level
3 basic linear algebra subprograms,” ACM Trans. Math. Soft., vol. 16,
no. 1, pp. 1–17, March 1990.

[14] F. G. Van Zee and R. A. van de Geijn, “BLIS: A framework for
rapidly instantiating BLAS functionality,” ACM Trans. Math. Soft.,
vol. 41, no. 3, pp. 14:1–14:33, June 2015. [Online]. Available:
http://doi.acm.org/10.1145/2764454

[15] K. Goto and R. A. van de Geijn, “Anatomy of a high-performance matrix
multiplication,” ACM Trans. Math. Soft., vol. 34, no. 3, p. 12, May 2008,
article 12, 25 pages.

[16] C. D. Yu, J. Huang, W. Austin, B. Xiao, and G. Biros, “Performance
optimization for the K-Nearest Neighbors kernel on x86 architectures,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15. New York,
NY, USA: ACM, 2015, pp. 7:1–7:12.

[17] D. A. Matthews, “High-performance tensor contraction without
BLAS,” CoRR, vol. abs/1607.00291, 2016. [Online]. Available:
http://arxiv.org/abs/1607.00291

[18] P. Springer and P. Bientinesi, “Design of a high-performance gemm-
like tensor-tensor multiplication,” CoRR, vol. abs/1607.00145, 2016.
[Online]. Available: http://arxiv.org/abs/1607.00145

[19] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J.
Dongarra, J. D. Croz, S. Hammarling, A. Greenbaum, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide (Third Ed.). Philadelphia, PA,
USA: SIAM, 1999.

[20] F. G. Van Zee and T. M. Smith, “Implementing high-performance
complex matrix ymultiplication,” ACM Transactions on Mathematical
Software, 2016, submitted.

[21] “GOTOBLAS,” https://www.tacc.utexas.edu/research-development/
tacc-software/gotoblas2.

[22] “OpenBLAS, an optimized BLAS library,” http://www.openblas.net.
[23] T. M. Smith, R. A. van de Geijn, M. Smelyanskiy, J. R. Hammond, and

F. G. Van Zee, “Anatomy of high-performance many-threaded matrix
multiplication,” in 28th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2014), 2014.

[24] B. Boyer, J.-G. Dumas, C. Pernet, and W. Zhou, “Memory efficient
scheduling of Strassen-Winograd’s matrix multiplication algorithm,” in
Proceedings of the 2009 International Symposium on Symbolic and
Algebraic Computation, ser. ISSAC ’09. New York, NY, USA: ACM,
2009, pp. 55–62.



[25] B. Grayson and R. van de Geijn, “A high performance parallel Strassen
implementation,” Parallel Processing Letters, vol. 6, no. 1, pp. 3–12,
1996.

[26] B. Lipshitz, G. Ballard, J. Demmel, and O. Schwartz, “Communication-
avoiding parallel Strassen: Implementation and performance,” in Pro-
ceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, ser. SC ’12. Los Alamitos,
CA, USA: IEEE Computer Society Press, 2012, pp. 101:1–101:11.

[27] “Intel Math Kernel Library,” https://software.intel.com/en-us/intel-mkl.
[28] R. van de Geijn and J. Watts, “SUMMA: Scalable universal matrix

multiplication algorithm,” Concurrency: Practice and Experience, vol. 9,
no. 4, pp. 255–274, April 1997.

[29] W. Huang, G. Santhanaraman, H. W. Jin, Q. Gao, and D. K. Panda,
“Design of high performance MVAPICH2: MPI2 over infiniband,”
in Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE
International Symposium on, vol. 1, May 2006, pp. 43–48.

[30] K. Goto and R. van de Geijn, “High-performance implementation of the
level-3 BLAS,” ACM Trans. Math. Soft., vol. 35, no. 1, pp. 1–14, 2008.

[31] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, “ScaLAPACK:
A scalable linear algebra library for distributed memory concurrent
computers,” in Proceedings of the Fourth Symposium on the Frontiers
of Massively Parallel Computation. IEEE Comput. Soc. Press, 1992,
pp. 120–127.


