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Abstract—Matrix multiplication (GEMM) is a core oper-
ation to numerous scientific applications. Traditional imple-
mentations of Strassen-like fast matrix multiplication (FMM)
algorithms often do not perform well except for very large
matrix sizes, due to the increased cost of memory move-
ment, which is particularly noticeable for non-square matrices.
Such implementations also require considerable workspace and
modifications to the standard BLAS interface. We propose
a code generator framework to automatically implement a
large family of FMM algorithms suitable for multiplications
of arbitrary matrix sizes and shapes. By representing FMM
with a triple of matrices [U,V, W] that capture the linear
combinations of submatrices that are formed, we can use the
Kronecker product to define a multi-level representation of
Strassen-like algorithms. Incorporating the matrix additions
that must be performed for Strassen-like algorithms into the
inherent packing and micro-kernel operations inside GEMM
avoids extra workspace and reduces the cost of memory move-
ment. Adopting the same loop structures as high-performance
GEMM implementations allows parallelization of all FMM
algorithms with simple but efficient data parallelism without
the overhead of task parallelism. We present a simple perfor-
mance model for general FMM algorithms and compare actual
performance of 20+ FMM algorithms to modeled predictions.
Our implementations demonstrate a performance benefit over
conventional GEMM on single core and multi-core systems.
This study shows that Strassen-like fast matrix multiplication
can be incorporated into libraries for practical use.

I. INTRODUCTION

Three recent advances have revived interest in the practi-
cal implementation of Strassen’s algorithm (STRASSEN) and
similar Fast Matrix Multiplication (FMM) algorithms. The
first [1] is a systematic way in which new FMM algorithms
can be identified, building upon conventional calls to the
BLAS matrix-matrix multiplication GEMM routine. That
work incorporated a code generator, due to the number of
algorithms that are identified and the complexity of exploit-
ing subexpressions encountered in the linear combinations of
submatrices. Parallelism was achieved through a combina-
tion of task parallelism and parallelism within the BLAS.
The second [2] was the insight that the BLAS-like Li-
brary Instantiation Software (BLIS) [3] framework exposes
basic building blocks that allow the linear combinations
of submatrices in STRASSEN to be incorporated into the
packing and/or computational micro-kernels already existing
in the BLIS GEMM implementation. Parallelism in that work
mirrored the highly effective data parallelism that is part

of BLIS. Finally, the present work also extends insights
on how to express multiple levels of STRASSEN in terms
of Kronecker products [4] to multi-level FMM algorithms,
facilitating a code generator for all methods from [1] (in-
cluding STRASSEN), in terms of the building blocks created
for [2], but allowing different FMM algorithms to be used
for each level. Importantly and unique to this work, the code
generator also yields performance models that are accurate
enough to guide the choice of a FMM implementation as a
function of problem size and shape, facilitating the creation
of poly-algorithms [5]. Performance results from single core
and multi-core shared memory system support the theoretical
insights.

We focus on the special case of GEMM given by C' :=
C + AB. Extending the ideas to the more general case of
GEMM is straightforward.

II. BACKGROUND

We briefly summarize how the BLIS framework imple-
ments GEMM before reviewing recent results [2] on how
STRASSEN can exploit insights that underlie this framework.

A. High-performance implementation of standard GEMM

Key to high performance implementations of GEMM is the
partitioning of operands in order to (near-)optimally reuse
data in the various levels of memory. Figure 1(left) illustrates
how BLIS implements the GOTOBLAS [6] approach. Block
sizes {m¢,nc, ket are chosen so that submatrices fit in
the various caches while {mpg,ng} relate to submatrices
in registers that contribute to C. These parameters can
be analytically determined [7]. To improve data locality,
row panels B, that fit in the L3 cache are “packed” into
contiguous memory, yielding B;,. For similar reasons, blocks
A; that fit in the L2 cache are packed into buffer A;.

B. High-performance implementations of STRASSEN

If one partitions the three operands into quadrants,
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Figure from [2] (used with permission from authors). Left: Illustration of the BLIS implementation of the GOTOBLAS GEMM algorithm.

All computation is cast in terms of a micro-kernel that is highly optimized. Right: modification that implements the representative computation M =
(X 4+ Y)YV +W);C+= M;D+= M of each row of computations in (2). X, Y are submatrices of A; V, W are submatrices of B; C, D are
submatrices of the original matrix C'; M is the intermediate matrix product. Note that the packing buffers A; and B, stay in cache.

then it can be shown that the operations

Mo =(Ap + A3)(Bo + Bs);
= (A2 + A3)Bo;
Mz = Ag(B1 — Bs);

Co+= Mo; C3+= Mo;
Co+= My;C3—= My;
Cr1+= Mz; C3+= Ma;

M3z =A3(B2 — Bo); Co+= M3; Ca+= Ms; 2)
My=(Ao + A1)Bs; C14= My; Co—= My;
Ms=(A2 — Ao)(Bo + B1); C3+= Ms;

Meg=(A1 — A3)(B2 + B3); Co+= Ms;

compute C' := AB + C, but with seven (sub)matrix multi-
plications, reducing the cost by a factor of 7/8 (ignoring a
lower order number of extra additions). If all matrices are
square and of size n x n, classical STRASSEN exploits this
recursively, reducing the cost for GEMM to O(n?807).
Only a few levels of the recursion are exploited in prac-
tice because the cost of extra additions and extra memory
movements quickly offsets the reduction in floating point
operations. Also, STRASSEN is known to become more
numerically unstable particularly when more than two levels

of recursion are employed [8], [9], [101".

In [2], captured in Figure 1(right), it was noted that the
additions of the submatrices of A and B can be incorporated
into the packing buffers A; and B,, avoiding extra memory
movements. In addition, once a submatrix that contributes
to C is computed in the registers, it can be directly added
to the appropriate parts of multiple submatrices of C, thus
avoiding the need for temporary matrices M,., again avoiding
extra memory movements. As demonstrated in [2], this
makes the method practical for smaller matrices and matrices
of special shape (especially rank-k updates, where k is
relatively small).

INote that [10] provides techniques for ameliorating the numerical
stability issues of fast matrix multiplication algorithms. The dominant
computations after applying those amending techniques are still the same
as we are targeting in [2] and this paper.



III. FAST MATRIX MULTIPLICATION ALGORITHMS

We now present the basic idea that underlies families of
FMM algorithms and how to generalize one-level formula
for multi-level FMM utilizing Kronecker products and re-
cursive block storage indexing.

A. One-level fast matrix multiplication algorithms

In [1], the theory of tensor contractions is used to find
a large number of FMM algorithms. In this subsection, we
use the output (the resulting algorithms) of their approach.

Generalizing the partitioning for STRASSEN, consider
C:=C+ AB, where C, A, and B are m X n, m X k, and
k xn matrices, respectively. [1] defines a (m, k, 1) algorithm
by partitioning

Co || Cia Ag || Az
R N I N N
Clim—1ya| - |Cri—1 Aot 1A
By || Bsy
and B= :
L R

Note that A;, B;, and C,, are the submatrices of A, B
and C, with a single index in the row major order. Then,
C :=C + AB is computed by,

for r=0,...,R—1,

mk—1 k-1
Mr = Z uiTAi X Z UjTBj N (3)
=0 7=0

Cp+= wp, M, (p=0,...,mn—1)

where (X) is a matrix multiplication that can be done
recursively, ., vjr, and wy, are entries of a (mk) x R
matrix U, a (kn) x R matrix V, and a (mn) x R matrix
W, respectively. Therefore, the classical matrix multiplica-
tion which needs mkn submatrix multiplications can be
completed with R submatrix multiplications. The set of
coefficients that determine the (m, k, n) algorithm is denoted
as [U,V,W].

For example, assuming that m, n, and k are all even,
one-level STRASSEN has (2,2, 2) partition dimensions and,
given the partitioning in (1) and computations in (2),

specifies [U, V, W] for one-level STRASSEN.

Figure 2 summarizes a number of such algorithms that can
be found in the literature that we eventually test in Section
V. We only consider 2 < m, k,n < 6 and don’t include
arbitrary precision approximate (APA) algorithms [11], due
to their questionable numerical stability.

Speedup (%)
Practical #1 |Practical #2
Ours| [1] [Ours| [1]
[13] 8 7 14.3| 11.9| -3.0{13.1| 13.1
[11 12 11 9.1 5.5] -13.1| 7.7 7.7
[1] 24 20| 20.0|11.9| -8.0|16.3| 17.0
[10] 24 20| 20.0| 4.8| -15.3|14.9| 16.6
[10] 20 18| 11.1| 1.5]-23.1| 8.6| 8.3
[10] 12 11 9.1 7.1 -6.6| 7.2 7.5
[10] 18 15| 20.0| 14.1| -0.7[17.2] 16.8
[10] 24 20| 20.0| 11.9| -1.8]16.1| 17.0
[10] 18 15| 20.0| 11.4| -8.1|17.3| 16.5
[14] 27 23| 17.4| 8.6| -9.3|14.4| 14.7
[14] 54 40| 35.0(-34.0| -41.6|24.2| 20.1
[1] 24 20| 20.0/ 4.9| -15.7|16.0| 16.8
[14] 36 29| 24.1| 8.4]-12.6/18.1] 20.1
[14] 45 36| 25.0| 5.2| -20.6]19.1| 18.9
[14] 54 40| 35.0|-21.6| -64.5|19.5| 17.8
[10] 16 14| 14.3| 9.4| -4.7/11.9| 12.2
[11 24 20| 20.0|12.1| -2.3/15.9| 17.3
[10] 32 26| 23.1| 10.4| -2.7|18.4| 19.1
[10] 24 20| 20.0| 11.3| -7.8]16.8] 15.7
[10] 36 29| 24.1| 8.1| -8.4/19.8] 20.0
[10] 32 26| 23.1| -4.2| -18.4|17.1| 18.5
[10] 20 18| 11.1| 7.0| -6.7] 8.2 8.5
[14] 54 40| 35.0(-33.4| -42.2|24.0| 20.2
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Figure 2. Theoretical and practical speedup for various FMM algorithms.
mkn is the number of multiplication for classical matrix multiplication
algorithm. R is the number of multiplication for fast matrix multiplication
algorithm. Theoretical speedup is the speedup per recursive step. Practical
#1 speedup is the speedup for one-level FMM comparing with GEMM when
m = n = 14400,k = 480 (rank-k updates)?. Practical #2 speedup is
the speedup for one-level FMM comparing with GEMM when m = n =
14400, £ = 12000 (approximately square). We report the practical speedup
of the best implementation of our generated code (generated GEMM) and
the implementations in [1] (linked with Intel MKL) on single core. More
details about the experiment setup is described in Section V.

B. Kronecker Product

If X and Y are m xn and p x ¢ matrices with (4, j) entries
denoted by x; ; and y; ;, respectively, then the Kronecker
product [12] X ® Y is the mp X ng matrix given by

z0,0Y

To,n-1Y
X®Y = . X
Tm—1,0Y Tm—1,,n-1Y

Thus, entry (X ®Y)p(r—1)4v,q(s—1)+w = Tr,sYo,w-

C. Recursive Block Indexing (Morton-like Ordering)

An example of recursive block storage indexing (Morton-
like ordering) [15] is given in Figure 3. In this example,

ZNote that symmetric rotations (e.g. (2,3,4) vs. (2,4,3)) may have
different performance. This is determined by the block size k¢ and the
partition dimension k. If k is relatively large for rank-k updates, then the
problem size k/k after partition might be smaller than k¢.
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Figure 3. Illustration of recursive block storage indexing (Morton-like
ordering) [15] on m x k matrix A where the partition dimensions m =
k = 2 for three-level recursions.

A undergoes three levels of recursive splitting, and each
submatrix of A is indexed in row major form. By indexing
A, B, and C in this manner, data locality is maintained when
operations are performed on their respective submatrices.

D. Representing two-level FMM with the Kronecker Product

In [4], it is shown that multi-level (2,2,2) STRASSEN
can be represented as Kronecker product. In this paper, we
extend this insight to multi-level~FMM, where each level
can use a different choice of (m, k,n).

Assume each su,bvmqgri)i of A, B, and C is partitioned with
another level of (m/, k’,n’) FMM algorithm with the coef-
ficients [U’, V', W'], and A;, B;, C}, are the submatrices of
A, B and C, with a single index in two-level recursive block
storage indexing. Then it can be verified that C':= C'+ AB
is computed by,

for r=0,..,R-R —1,

mk-m k' —1

r = < Z
k- k’n/—l
(VeV").Bj|;

(p=0,...,mn

(U® U/)i,rAi> X

Ot (W & W), A 1)
where ® represents Kronecker Product. Note that U @ U’,
VoV’ and WeW' are (mk-m'k') x (R-R'), (kn-k'7") x
(R- R, (mn-m'n’) x (R- R') matrices, respectively.
_The set of coefficients of a two-level (m, k,7) and
(m!, k', n’) FMM algorithm can be denoted as [U®U’,V ®
VW @ W'].
For example, the two-level STRASSEN is represented by

the coefficients [U ® U,V ® V,W ® W] where [U,V, W]
are the one-level STRASSEN coefficients given in (4).

E. Additional levels of FMM

Comparing one-level and two-level FMM, the same skele-
ton pattern emerges. The formula for defining L-level FMM
is given by,

L—-1
for r=0,.., ][y Bi—1,
L—1 L—1_
[T myk—1 kg —1
=0 L—1 1=0 L—-1
My = ZO (& Uh)irAi | x ZO (® V1)j.rBj |;
i= = j= =0

(5
The set of coefficients of an L-level (my,k;,n;)
(= 0 1,...,L—1) FMM algorithm can be denoted as

L— L—
[[®l 0 Ul’ l:Ol ‘/lv l:ol VVI]]

IV. IMPLEMENTATION AND ANALYSIS

The last section shows that families of one-level FMM
algorithms can be specified by (m,k,n) and [U,V,W].
It also shows how the Kronecker product can be used to
generate multi-level FMM algorithms that are iterative rather
than recursive. In this section, we discuss a code generator
that takes as input (m, k,n) and [U,V,W] and as output
generates implementations that build upon the primitives that
combine taking linear combinations of matrices with the
packing routines and/or micro-kernels that underlie BLIS.
The code generator also provides a model of cost for each
implementation that can then be used to choose the best
FMM for a matrix of given size and shape. This code
generator can thus generate code for arbitrary levels of FMM
that can use different FMM choices at each level. In this
way, we have generated and compared more than 200 FMM
algorithms.

A. Code generation

Our code generator generates various implementations of
FMM, based on the coefficient representation [U,V, W],
levels of recursion, and packing routine/micro-kernel incor-
poration specifications.

There are two stages for our code generator: generating
the skeleton framework, and generating the typical opera-
tions given in (3).

Generating the skeleton framework: During this stage, the
code generator

o Computes the Kronecker Product of the coefficient
matrices [U;, Vi, W] in each level | to get the new
coefficients [®1 " Ur, Q1= Vi, @1, Wil.

o Generates the matrix partition code by conceptual re-
cursive block storage indexing with (my, k;, n;) parti-
tion dimensions for each level.

« For the general cases where one or more dlmensmns
are not multiples of corresponding [1/," mz, [T k1,
Hz:o ny, it generates dynamic peeling [16] code to
handle the remaining “fringes” after invoking FMM,
which requires no additional memory.
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kernel that incorporates addition of M, to multiple Figure 5. The top table shows the equations for computing the execution

submatrices of C'.

Incorporating the generation of these variations into the code
generator yields over 200 FMM implementations.

B. Performance model

In [2], a performance model was given to estimate the
execution time 7' for the one-level/two-level ABC, AB,
and Naive variations of (2,2,2) STRASSEN. In this sub-
section, we generalize that performance model to predict
the execution time 7" for the various FMM implementations
generated by our code generator. Theoretical estimation
helps us better understand the computation and memory
footprint of different FMM implementations, and allows us
to avoid exhaustive empirical search when searching for
the best implementation for different problem sizes and
shapes. Most importantly, our code generator can embed

time 7" and Effective GFLOPS in our performance model. The middle table
shows the various components of arithmetic and memory operations for
BLAS GEMM and various implementations of FMM. The time shown in
the first column for GEMM and L-level FMM can be computed separately
by multiplying the parameter in 7 column with the arithmetic/memory
operation number in the corresponding entries. The bottom table shows
the coefficient NX/NX mapping table for computing Ta/Tm in_the
performance model. Here M = Hl P Lmy, K = Hl 01 k, N =

L 1 n, ®U ®lL ()1 U, ®V ®ZL 01 Vi, ®W ®lL ()1 Wi,
Ry = 15 R

our performance model to guide the selection of a FMM
implementation as a function of problem size and shape,
with the input (my, k;,n;) and [U;, V;, W;] specifications
on each level /. These performance models are themselves
automatically generated.
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Figure 6. Performance of generated one-level ABC, AB, Naive FMM implementations on single core when m=n=14400, k varies. Left column: actual
performance; Right column: modeled performance. Top row: one-level, ABC; Middle row: one-level, AB; Bottom row: one-level, Naive.
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Assumption: We have similar architecture assumptions
as in [2]. Basically we assume that the architecture has
two layers of modern memory hierarchy: fast caches and
relatively slow main memory (DRAM). For read operations,
the latency for accessing cache can be ignored, while the
latency for accessing the main memory is counted; For write
operations, we assume a lazy write-back policy such that the
time for writing into fast caches can be hidden. Based on
these assumptions, the memory operations for GEMM and
various implementations of FMM are decomposed into three
parts:

o memory packing shown in Figure 1.

« reading/writing the submatrices of C' in Figure 1.

o reading/writing of the temporary buffer that are parts
of Naive FMM/AB FMM.

Notation: Notation is summarized in Figure 4.

The total execution time, 7', is dominated by arithmetic
time 7, and memory time 7;,, () in Figure 5).

Arithmetic operations: T, is decomposed into submatrlx
multlpllcatlons (T;) and submatrlx additions (7, A+ T

+) (® in Figure 5). T, X+ has a coefficient 2 because
under the hood the matrix additions are cast into FMA
operations. The corresponding coefﬁc1ents NZX are tabulated
in Figure 5. For instance, No* = nnz(®U) Ry, for
L-level FMM, because computing Y ((QU); A4;) in (5)
involves Zfi{%nnz((@U):m) —1) = nnz(QU) —
submatrix additions. Note that X. , denotes the rth column
of X.

Memory operations: T, is a function of the submatrix
sizes {m/Mfp, k/K,n/Np}, and the block sizes {m¢, k¢,
ne} in Figure 1(right), because the memory operation can
repeat multiple times according to which loop they reside in.
T, is broken down into several components, as shown in @)
in Figure 5. Each memory operation term is characterized in
Figure 5 by its read/write type and the amount of memory
in_units of 64-bit double precision elements. Note that

T,ﬁx ,Tﬁ * are omitted in @ because of the assumption of
lazy write-back policy with fast caches. Due to the software
prefetching effects, 75 * =2)\7+ N%[k/ L7, has an addi-
tional parameter A € [0.5, 1], Wthh denotes the prefetching
efficiency. )\ is adapted to match GEMM performance. Note

that this is a ceiling function proportional to k, because rank-
k}/KL ‘|

k updates for accumulating submatrices of C' recur [~
times in 4th loop in Figure 1. The corresponding coefﬁc1ents
N;X are tabulated in Figure 5. For example, for Naive FMM
and AB FMM, computing Cp+= (QW), M,(p =0, ...)
in (5) involves 2 read and 1 wr1te related to temporary buffer
in slow memory. Therefore, NS* = = 3nnz(QW).

C. Discussion

We can make estimations about the run time performance
of the various FMM implementations generated by our code
generator, based on the analysis shown in Figure 5. We
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use Effective GFLOPS (defined in () in Figure 5) as the
metric to compare the performance of these various FMM
implementations, similar to [1], [17], [18]. The architecture-
dependent parameters for the model are given in Section
V. We demonstrate the performance of two representative
groups of experiments in Figures 6 and 7.

o Contrary to what was observed in [2], Naive FMM
may perform better than ABC FMM and AB FMM for
relatively large problem size. For example, in Figure 6,
(3,6, 3) (with the maximum theoretical speedup among
all FMMs we test, Figure 2) has better Naive FMM
performance than ABC FMM and AB FMM. This
is because the total number of times for packlng in
(3,6,3) is very large (N = = mz(QU), Np* =
nnz(@V)). This magnifies the overhead for packmg
with AB FMM/ABC FMM.

o Contrary to what was observed in [1], for rank-k up-
dates (middle column, right column, Figure 7), (2,2, 2)
still performs the best with ABC FMM implemen-
tations ([1] observe some other shapes, e.g. (4,2,4),
tend to have higher performance). This is because their
implementations are similar to Naive FMM, with the
overhead for forming the M, matrices explicitly.

o Figure 6 shows that for small problem size, when k
is small, ABC FMM performs best; when k is large,
AB FMM/Naive FMM perform better. That can be
quantitatively explained by comparing the coefficients
of N.X in the bottom table in Figure 5.

e The graph for m = n = 14400, k varies, ABC, Icore
(left column, Figure 6; middle column, Figure 7) shows
that for k eqvual to the appropriate multiple of ko (
k = l o k:l X k), ABC FMM achieves the best
performance.

D. Apply performance model to code generator

For actual performance, even the best implementation
has some unexpected drops, due to the “fringes” which are
caused by the problem sizes not being divisible by partition
dimesions m, k, n. This is not captured by our performance
model. Therefore, given the specific problem size and shape,
we choose the best two implementations predicted by our
performance model as the top two candidate implementa-
tions, and then measure the performance in practice to pick
the best one.

In Figure 8 we show the performance results on single
core by selecting the generated FMM implementation with
the guide of performance model, when m=k=n; m=n=
14400, k varies; and k=1024, m=n vary.

Overall this experiment shows that the performance model
is accurate enough in terms of relative performance between
various FMM implementations to guide the choice of a
FMM implementation, with the problem sizes and shapes
as the inputs. That will reduce the potential overhead of
exhaustive empirical search.

V. PERFORMANCE EXPERIMENTS

We present performance evaluations for various generated
FMM implementations.
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Figure 9. Benefit of hybrid partitions over other partitions.

A. Implementation and architecture information

The FMM implementations generated by our code gener-
ator are written in C, utilizing SSE2 and AVX assembly,
compiled with the Intel C compiler version 15.0.3 with
optimization flag -03 -mavx.

We compare against our generated DGEMM (based on the
packing routines and micro-kernel borrowed from BLIS,
marked as BLIS in the performance figures) as well as Intel
MKL’s DGEMM [19] (marked as MKL in the performance
figures).

We measure performance on a dual-socket Intel Xeon ES-
2680 v2 (Ivy Bridge, 10 cores/socket) processor with 12.8
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Figure 10. Performance of the best implementation of our generated FMM code and reference implementations [1] on one socket (10 core). Top row:
our implementations; Bottom row: reference implementations from [1] (linked with Intel MKL). Left column: m=k=n; Middle column: m=n=14400, k
varies; Right column: £=1024, m=n vary.



GB/core of memory (Peak Bandwidth: 59.7 GB/s with four
channels) and a three-level cache: 32 KB L1 data cache,
256 KB L2 cache and 25.6 MB L3 cache. The stable CPU
clockrate is 3.54 GHz when a single core is utilized (28.32
GFLOPS peak, marked in the graphs) and 3.10 GHz when
ten cores are in use (24.8 GLOPS/core peak). To set thread
affinity and to ensure the computation and the memory
allocation all reside on the same socket, we disable hyper-
threading explicitly and use KMP_AFFINITY=compact.

The blocking parameters, ng = 4, mr = 8, k¢ = 256,
no = 4096 and mc = 96, are consistent with parameters
used for the standard BLIS DGEMM implementation for this
architecture. This makes the size of the packing buffer A;
192 KB and B, 8192 KB, which then fit the L2 cache and
L3 cache, respectively.

Parallelization is implemented mirroring that described
in [20], using OpenMP directives that parallelize the third
loop around the micro-kernel in Figure 1.

B. Benefit of hybrid partitions

First, we demonstrate the benefit of using different FMM
algorithms for each level.

We report the performance of different combinations of
one-level/two-level (2,2,2), (2,3,2), and (3,3,3) in Fig-
ure 9, when £ is fixed to 1200 and m = n vary. As suggested
and illustrated in Section IV-C, ABC FMM performs best
for rank-k updates, which is why we only show the ABC
FMM performance.

Overall the hybrid partitions (2,2,2) + (2,3,2) and
(2,2,2) + (3,3,3) achieve the best performance. This is
because 1200 is close to 2 x 3 X k¢, meaning that the hybrid
partitions of 2 and 3 on the k& dimension are more favorable.
This is consistent with what the performance model predicts.
Performance benefits are less for 10 cores due to bandwidth
limitations, although performance of hybrid partitions still
beats two-level homogeneous partitions.

This experiment shows the benefit of hybrid partitions,
facilitated by the Kronecker product representation.

C. Sequential and parallel performance

Results when using a single core are presented in Figures
2, 6, and 7. Our generated ABC FMM implementation
outperforms AB FMM/Naive FMM and reference imple-
mentations from [1] for rank-k updates (when k is small).
For very large square matrices, our generated AB FMM
or Naive FMM can achieve competitive performance with
reference implementations [1] that is linked with Inte]l MKL.
These experiments support the validity of our model.

Figure 10 reports performance results for ten cores within
the same socket. Memory bandwidth contention impacts
the performance of various FMM when using many cores.
Nonetheless we still observe the speedup of FMM over
GEMM. For smaller matrices and special shapes such as rank-
k updates, our generated implementations achieve better
performance than reference implementations [1].

VI. CONCLUSION

We have discussed a code generator framework that can
automatically implement families of FMM algorithms for
Strassen-like fast matrix multiplication algorithms. This code
generator expresses the composition of multi-level FMM
algorithms as Kronecker products. It incorporates the matrix
summations that must be performed for FMM into the
inherent packing and micro-kernel operations inside GEMM,
avoiding extra workspace requirement and reducing the
overhead of memory movement. Importantly, it generates
an accurate performance model to guide the selection of
a FMM implementation as a function of problem size and
shape, facilitating the creation of poly-algorithms that select
the best algorithm for a problem size. Comparing with
state-of-the-art results, we observe a significant performance
improvement for smaller matrices and special matrix mul-
tiplication shapes such as rank-k updates, without the need
for exhaustive empirical search.

There are a number of avenues for future work:

o Task parallelism and various parallel schemes are pro-
posed in the recent literature [21], [1]. We need to
pursue how our techniques compare to these and how
to combine these with our advances. It may be possible
to utilize our performance model for task scheduling.

o Finding the new FMM algorithms by searching the
coefficient matrix [U,V,W] is an NP-hard problem
[22]. It may be possible to prune branches with the
performance model as the cost function during the
search process.

o In [2], it is shown that Intel Xeon Phi coprocessor
(KNC) can benefit from ABC variation of STRASSEN.
It may be possible to get performance benefit by porting
our code generator to generate variations of FMM
implementations for many-core architecture such as
second-generation Intel Xeon Phi coprocessor (KNL).

o The asymptotic communication lower bound for
Strassen’s algorithm and matrix multiplication has been
characterized in [23], [24], [25], [26]. It may be pos-
sible to apply our performance model to constrain the
coefficients of the cubic and quadratic terms and get
more precise lower bound for specific architectures.
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