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ABSTRACT
We present context parallelism for long-context large language model inference, which achieves near-linear scaling
for long-context prefill latency with up to 128 H100 GPUs across 16 nodes. Particularly, our method achieves
IM context prefill with Llama3 405B model in 77s (93% parallelization efficiency, 63% FLOPS utilization) and
128K context prefill in 3.8s. We develop two lossless exact ring attention variants: pass—KV and pass—-Q
to cover a wide range of use cases with the state-of-the-art performance: full prefill, persistent KV prefill and
decode. Benchmarks on H100 GPU hosts inter-connected with RDMA and TCP both show similar scalability
for long-context prefill, demonstrating that our method scales well using common commercial data center with

medium-to-low inter-host bandwidth.

1 INTRODUCTION

Contemporary large language models (LLMs), such as
Llama (Touvron et al., 2023a;b; Llama Team, 2024), Gem-
ini (Gemini Team, 2023; 2024), GPT-4 (Achiam et al.,
2023), require significant computational resources for infer-
ence, especially with long context lengths: OpenAl GPT-40
128K context length (ope), Anthropic’s Claude with 200K
context length (ant), Google’s Gemini 1.5 Pro with 1M con-
text length (goo). With a single H100 GPU host (8 GPUs),
it can take 60 seconds to serve 128K context length! or
1200 seconds to serve 1M context length for Llama3 405B
model. Context parallelism (CP) is a system optimization
technique that improves the latency and scalability of LLM
inference, particularly for long contexts. Without modifying
the underlying dense attention algorithms, CP offers several
advantages for long-context LLM inference:

¢ Compute parallelization: CP distributes computation
across multiple GPUs in order to reduce latency, in
contrast with pipeline parallelization (PP) (Huang et al.,
2019) that improves throughput but not latency.

¢ Communication message size reduction: Compared
to tensor parallelism (TP) (Shoeybi et al., 2019), CP
demands less communication bandwidth in multi-host
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'Google’s Gemini 1.5 Pro (Sep 2024) has a latency of 20.43
seconds for time to first token on 100K context length, from
https://artificialanalysis.ai/models/gemini-
1-5-pro/prompt-options/single/100k.

environments, by maintaining a communication size
that is orders of magnitude smaller than TP, especially
for inter-node communication.

¢ KV cache distribution: Key and value (KV) embed-
dings grow linearly with context length. CP distributes
the storage of KV embeddings across multiple GPUs,
enabling larger batch sizes with the addition of more
CP ranks.

To the best of our knowledge, this is the first paper to dis-
close the system implementation details on applying context
parallelism in inference scenario. Our main contribution
lies in the adaptation and optimization of ring attention (Liu
et al., 2023) for efficient LLM inference with long con-
text lengths. While the previous work primarily focuses on
leveraging ring attention to enhance training throughput for
long sequences, this paper identifies and addresses unique
challenges posed by inference:

e Support for multi-turn prefill and decoding: We
recognize the importance of multi-turn conversations,
a common characteristic of online LLM applications.
Unlike prior research focused on training, we intro-
duce novel strategies on load-balanced sharding for
persistent KV cache and parallelization algorithms that
leverage sharded KV cache across multi-turn prefill
and decode. These mechanisms are crucial for main-
taining conversation history during inference.

* Optimization for latency: Latency is critical for user
experience in real-time inference. To optimize latency
in multi-turn conversations, we developed pass—-KV
and pass—Q ring attention variants and heuristics to
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dynamically select the ring attention algorithms for the
lowest latency under varying context lengths and KV
cache hit rates.

¢ Compute and memory load balancing: To maintain
balanced load among CP ranks across batched requests
with varying input lengths, we introduce load-balanced
sharding of both input tokens and KV cache entries.
Previous work targets training typically with uniform
sequence length. We proposed innovative algorithms
to ensure even distribution of compute and KV cache
memory across CP ranks, contributing to improved
overall performance and scalability.

In essence, our work extends context parallelism to effi-
ciently address the challenges and requirements of serving
millions of tokens in LLM inference. We introduce novel al-
gorithms and heuristics for optimizing ring attention, demon-
strating their effectiveness in reducing latency, improving
KV cache utilization, and enabling scalable distributed infer-
ence for long-context LLMs. Since our method focuses on
system-level optimizations, it can be seamlessly integrated
with architectural innovations or algorithmic enhancements
to further amplify performance gains.

2 BACKGROUND
2.1 Large Language Models (LLM)

Since the introduction in the seminal work (Vaswani, 2017),
the transformer model architecture has become the funda-
mental building block for modern language models. Re-
cently, language models have increased exponentially in
complexity (measured in number of parameters). Examples:
BERT was trained with 0.34B parameters in 2018 (Devlin,
2018), 1.5B parameter GPT-2 was released in 2019 (Rad-
ford et al., 2019), and 175B parameter GPT-3 was released
one year later in 2020 (Brown, 2020), and the latest Llama
3.1 model pushed to 405B parameters (Llama Team, 2024).

Besides the parameter number, the context length is another
important indicator of LLM’s capabilities. In general, a
longer context window indicates better capability to handle
a large body of input texts, audios, images, and videos. Mod-
ern LLMs support 128K to more than 1M context lengths
(ope; ant; goo).

2.2 Challenges with Serving Long Context LLM

In this work, we mainly address the challenges with ex-
tremely large (128K-1M) context lengths.

e Compute: While an W-parameter Transformer model
requires 2 - W matrix multiplication FLOPs for each
token during inference or forward pass (Kaplan et al.,
2020), the pairwise attention architecture found in

mainstream transformers (Vaswani, 2017) incurs a
quadratic cost in FLOPs w.r.t. context lengths, which
would be dominating in long context cases. Several
approximate and sparse methods were proposed, in-
cluding focusing attention on a subset of tokens, and
employing a combination of local and global attention
strategies. Techniques such as window attention (Liu
et al., 2021), local attention (Xiong et al., 2021), Lin-
former (Wang et al., 2020), and semi-local sparse at-
tention (Jiang et al., 2024; Beltagy et al., 2020) are
examples of such innovations that help manage the
computational cost.

* Memory: Memory usage for LLMs, particularly the
KV cache (Pope et al., 2023), scales linearly with
the context length. Model compression techniques
such as KV cache quantization are crucial for bend-
ing the growth curve: lower precision formats like
3-bit, INT4/8 or FP8 can achieve a 2x to 4x reduc-
tion in memory requirements compared to using 16-
bit (Hooper et al., 2024; Lin et al., 2024). Grouped
Query Attention (GQA) (Ainslie et al., 2023) and
MOQA (Shazeer, 2019) were widely adopted to reduce
memory usage by reducing the number of KV heads
by 8x to 64x. Additionally, strategies like paged at-
tention (Kwon et al., 2023) have been developed to
provide efficient page-like memory management for
large numbers of tokens.

2.3 Prior works on Long Context LLM

The following are the main directions to achieve efficient
long context window LLM inference:

* New model architectures: introduce long context
window comprehension components at pretraining
stage (Munkhdalai et al., 2024).

* Post-training changes: modify a pretrained model
with shorter context window to support longer or even
infinite context windows (Xiao et al., 2023).

» System-level optimizations: preserve the model ar-
chitecture, instead improve the scalability of existing
dense attention algorithms to leverage more compute
resources (Li et al., 2021; Brandon et al., 2023; Liu
et al., 2023; Wu et al., 2024; Li et al., 2023; Jacobs
et al., 2023; Fang & Zhao, 2024).

Our work falls into the third category, and can be used in
conjunction with methods from the other two categories
with minor or no modifications. Our method accelerates
future algorithmic research or real-world LLM applications
for long-context LLM serving, and also provides the flex-
ibility to trade off model inference latency with hardware
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Table 1. Notation table.

Table 2. Communication and memory cost comparison between

Notation Description tensor parallel (TP) and context parallel (CP) for full prefill. 7"
No Number of query heads (or attention heads) sequence length, Dy;: head dimension, N : # of attention heads,
Niv Number of key/value heads Ngv: # of key/value heads, Nrp: TP group size, W: model
Du Head dimension in Transformer parameter size. Total comm cost shows the communication cost
D Model dimension in Transformer: Dy - Ng per transformer block.
Q,K,V Query, Key, Value tensors
B Batch size (# of input sequences) TP CP
W Model parameter size COLLECTIVE ALLREDUCE SENDRECV
T Input sequence length COMM PER 2 LINEAR| 7T - Ny -Du 0
P Previously cached KV length COMM PER ATTN 0 T -Ngv-Dgy
e Element data type size TOTAL COMM 2-(T-Ny-Du)|T - Nkv-Dnu
C Peak compute PARAMETER SIZE N—‘;’P W
BW Peak comm bandwidth

bid Decode batch id
# of {new tokens | cached KV tokens} in i-th

T\ sequence sharded to CP rank j
L KV length in i-th sequence: maa ' (P} + T})
N Number of hosts/nodes/CP ranks

Nrp TP group size (# of GPUs in a TP group)

s si.: s | {Query | key and value tensors | batch id }

Qk[ K Vi |bidy on rank k, originally allocated to rank s
Oy, Attention output from Q) and K'V'*

Tensor parallel sharding over 8 GPUs

TP8,TP16 on one node or 16 GPUs on two nodes
CP Context parallel sharding on /N nodes
N with TPS8 for each node (same as ¢ Py+TP8)
TTFT Time—to—ﬁr.st—token: latency for prefilling
the whole input tokens
TTIT Time-to-incremental-token: latency for

decoding each output token

capacity depending on the latency requirements of specific
applications.

3 CONTEXT PARALLEL INFERENCE
3.1 Notations

The notations used in this paper are summarized in Table 1.

3.2 Model Parallelization

Large language models are commonly parallelized across
multiple GPUs using a combination of various parallelism
paradigms: Tensor Parallelism (TP) (Shoeybi et al., 2019;
Korthikanti et al., 2023) partitions the weights of fully con-
nected layers (i.e., linear layers) by alternating the shard-
ing in row and column dimensions. Pipeline Parallelism
(PP) (Narayanan et al., 2021) shards layers into different
pipeline stages, and splits input tensors along the batch
size dimension into micro-batches to orchestrate a pipeline
schedule to optimize the system throughput. Instead of
sharding model weights, Context Parallelism (CP) (Li
et al., 2021) distributes input tokens to multiple GPUs along
the sequence length dimension. CP ranks communicate
QKYV tensors for attention, which is the only computation

with dependency between tokens in the same sequence.

Both TP and CP reduce latency when scaled to multiple
nodes. Compared with TP, CP provides an alternative design
choice for trade-offs between memory consumption and sys-
tem performance. As detailed in Table 2, CP communicates
token embeddings on attention layers while TP communi-
cates on linear layers. CP has less communication traffic
for two reasons: (1) Contemporary LLMs have more lin-
ear layers than attention layers: each canonical transformer
block has four linear layers and one attention layer. (2) CP
may communicate KV tensors instead of Q tensors, which
leads to much less communication for models with GQA
(Ainslie et al., 2023). For Llama3 405B model with 128
query heads and 8 KV heads (Ngy = 8 vs. Ny = 128),
communicating KV heads has 16x smaller message sizes
than communicating query heads (Llama Team, 2024). CP’s
communication cost advantage over TP results in significant
latency improvements for multi-node inference, as inter-
connect bandwidth between nodes are several times lower
than intra-node bandwidth (Section 4.2.2). Although CP
offers lower communication costs, it incurs higher memory
consumption because its lack of model weight sharding.

In this paper, we design and implement an efficient LLM
inference system with CP to unblock such a trade-off when
scaling out the number of GPUs. In practice, we set TP size
into a number (usually 8) to fit the model into GPU memory,
and we leverage CP to efficiently scale out into multiple
nodes as it saves communication traffic.

3.3 Inference Prefill and Decode Attention

We characterize large language model online inference for
multi-turn messaging into three stages: full prefill, partial
prefill, and decode. When user initiates the conversation
with an initial prompt, the entire prompt goes through full
prefill, where we compute full causal attention between
tokens. Projected key and value tensors from multi-head
(MHA) or grouped query attention (GQA) (Ainslie et al.,
2023) are saved in GPU HBM as KV cache. After the initial
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full prefill, the model then starts generating a response with
auto-regressive decoding, where a new token attends to
previously cached KV tensors and outputs response tokens
one at a time. KV values generated during decoding stage
are also saved in KV cache. After the server returns a
response, the user may give a follow-up prompt, which
will go through partial prefill (or persistent KV prefill),
where tokens within the new prompt attend to themselves as
well as all cached tokens in the previous prompt and model
response. This process may repeat multiple times in real
world applications, which requires persistency of KV cache
between prompts from the same user.

3.4 Computation and Communication Modeling

Each of the three stages of multi-turn online LLM inference
carries different performance characteristics.

Assume we have an input sequence with length 7', with
previously cached KV length P, and a generic GQA model
with Ny query heads, Ny key and value heads and model
dimension D. We have the following shapes for query (Q),
key (K), and value (V) embeddings:

shape(Q) = [T, Ny, NL;}

shape(K) = shape(V) = [(T + P), Nkv, NL;]

When Q and KV have the same lengths, passing KV around
in ring attention incurs smaller traffic than passing Q, and
the communication can be fully overlapped with attention
computation (Li et al., 2021). LLM training guarantees this
property len(Q) = len(K) = len(V) = T, or equiva-
lently, P = 0. This is not necessarily true for inference as
len(Q), len(K), and len(V') depend on user behaviors and
KV cache configurations.

For inference, with high persistent KV hit rate, the ring
attention algorithm that always passes KV around may not
provide the best performance, as:

* Attention computation is much faster with fewer Q
than cached KV. Communication cost will be exposed
on critical path if not fully overlap with computation.

* When Q is significantly smaller than the cached KV,
communicating the full persistent KV would be signifi-
cantly more costly than communicating Q.

To achieve better inference performance for full prefill, per-
sistent KV prefill, and decode, we extend ring attention with
an option to pass Q instead of KV, when passing Q leads to
less communication cost. Specifically, Q embeddings have
smaller size than KV embeddings if:

Table 3. GQA attention complexity for full prefill and partial prefill
(e: number of bytes per element).

FULL PREFILL PARTIAL PREFILL
FLOPS 4T°D 4TD(T + P)
Q BYTES TDe TDe
KV BYTES | 2TDEEY-e | 2(P+T)D5EYe
T N
<2 = (1)
T+P Nr

Note that the right hand side (RHS) is constant given a pre-
trained model. Therefore we can use the RHS as a constant
threshold to switch between passing KV embeddings and
Q embeddings dynamically depending on NLP, or the KV
cache miss rate ( 1— KV cache hit rate).

Specifically, for full prefill where P = 0, communicating
KV embeddings results in a smaller message size for GQA
models with Ng > 2 X Ngy. For decoding where T' =
1, communicating Q embedding almost always results in
smaller communication sizes. Consequently, we leverage
ring pass—KV for full prefill, and ring pass—Q for decode
and partial prefill with high KV cache hit rate.

To understand whether communication can be reliably over-
lapped with attention computation with varying persistent
KV hit rates, we approximate the attention computation
and QKV communication latency using a simple roof-line
model (Table 3).

Let’s assume a system with peak compute of C, bandwidth
of BW for QKV communication, new token length 7', and
cached token length P. We focus the analysis on prefill with
low persistent KV hit rate, which is compute-bound and
the culprit of long (e.g. 60s) prefill latency for inference.
In the following analysis, we aim to identify values of P
and T such that the communication latency is smaller than

the computation latency. In simplified terms: % >
min(Quytes, K Viytes)
BW .

For low-to-medium KV cache hit rate prefill, we will not be
bound by ring pass—-KV communication if:

Nkv
Ny

4-T-D(T+P) _ 2.(T+P)-D-e-

C - BW
To extend to multi-host distributed inference, we would fur-
ther partition each CP rank with TP over intra-node GPUs,
and add additional CP nodes to increase parallelization on
context dimension. For CP over N nodes, we would be

able to hide ring pass—KV communication latency under
attention computation if:

2.(T+P) D-e- Nxv

4-T-D(T+P) e
BW

N.-C -
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=N Ny BW @

Note that the threshold for 7', the length of new tokens is a
static threshold with respect to a given model and hardware,
which is independent of KV cache hit on the previously
cached KV length P.

Similarly, in a distributed inference setting with CP over
N nodes, we will not be bottlenecked by ring pass-Q
communication if:

A4.T-D(T+P) _T-D-e

>
N-C - BW
e-C
(T—|—P)ZN-4_BW 3)

Note that RHS is also static with respect to one particular
system. As we have discussed, we will leverage pass-Q
when the number of new tokens to prefill 7" is significantly
smaller than the number of cached tokens P. In this case,
whether we will be able to completely overlap the latency for
communicating Q is determined by the total context length
(T + P). Sufficiently large total context length would allow
us to overlap the pass—0Q communication regardless of KV
cache hit rate.

Algorithm 1 Pass-KV vs. Pass-Q Partial Prefill Heuristics

if 7> NN or 705 > 25K then
pass-KV

else
pass-Q

end if

To summarize, we adaptively switch between pass-KV
and pass—Q for inference partial prefill following the
heuristics in Algorithm 12. It’s worth noting that the full
prefill can be considered as a special case where P = 0,
while decoding can be viewed as a special case where T' =
1. We can calculate the static thresholds for this heuristics
once based on the system and model spec, and use the
heuristics to choose which options to use dynamically for
the optimal performance in a wide combination of total
context length and KV cache hit thresholds.

3.5 Ring Pass-KYV, Pass-Q Prefill

We implemented both pass—KV and pass—Q ring atten-
tion to minimize the communication latency with different
context lengths and KV cache hit rate. In this section, we
delve into the implementation details for achieving effective

*In practice, the achieved BW and C are lower than the theo-
retical hardware peaks. We start with these peak values and then
fine-tune the thresholds based on empirical data.

S1K1  S1K2 S1K3 S1K4 S2K1 S2K2 S2K3  S2K4

s1Q1 X ‘ $1, chunk0, CPO ‘
S1Q4 X X X X ‘ $1, chunk3, CP0O ‘
S2Q1 X ‘ §2, chunk0, CPO ‘
x| x| x
S2Q4 X X X X ‘ 82, chunk3, CPO ‘

Figure 1. Load-balanced CP sharding with fused inputs in full
prefill with 2 CP ranks (CP2). We have 2 input sequences: S1,
S2. Each is partitioned evenly into 4 chunks: @; / K;, where
1=1,2,3,4.

load balancing and communication overhead management,
which are critical to the the scalability of distributed context
parallel inference.

3.5.1 Load Balanced Sharding

In causal attention each token attends to all tokens before it
in the same sequence. Naively partitioning all tokens evenly
over CP ranks in the order of the original sequence results
in imbalanced compute over different CP ranks. Prior work
leverages order permutation and uneven partition to achieve
load balance for causal attention (Cho et al., 2024; Brandon
et al., 2023). To support maximum context length provided
by the pretrained model without OOM on any particular CP
rank with heavier load, we aim for load-balancing for both
attention compute and KV cache capacity. To shard an input
sequence into N CP ranks, we partition the sequence evenly
into 2 X N chunks: Cy, C1, ..., Cox y_1, and have each CP
rank i take two chunks: (C;, Cox n_i_1).

For fused variable length inputs in full prefill, we partition
each individual sequence in the same way and pad the input
sequence length if needed (Figure 1).

For partial prefill with new tokens (total length: 7") and
cached tokens (total length: P), we apply the load-balanced
sharding in the dimension of the new tokens regardless of
cached tokens (Figure 2).

3.5.2 Ring Pass-KV Algorithm

In Llama3 training (Llama Team, 2024), the all-gather based
pass—KV algorithm is utilized, which initially performs an
all-gather on the key and value tensors, followed by com-
puting the attention output for the local query tensor chunk.
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S1K1  S1K2 S1K3 S1K4 S1K5 S1K6 S2K1 S2K2 S2K3 S2K4  S2K5  S2K6

$1, chunk0, CPO

1, chunk1, CP1
$1, chunk2, CP1

1, chunk3, CPO

s1a3 | X X X

s104 | X X X X

$105 X X X X X

$1Q6 X X X X X X

s203 X X X $2, chunk0, CPO

2, chunk1, CP1
2, chunk2, CP1

$2, chunk3, CPO

S2Q4 X X X X

5205 X X X X X

S2Q6 X X X X X X

Figure 2. Load-balanced CP sharding with fused inputs partial pre-
fill with 2 CP ranks (CP2). We have 2 input sequences: S1, S2.
Load-balanced sharding is applied to the new token (Q; dimension
(4 chunks), regardless of how cached token dimension K is parti-
tioned in partial prefill.

The all-gather communication latency becomes a bottleneck
in the critical path, complicating the overlap of operations
during inference, especially with variant sequence lengths
in a batch and partial prefill used in multi-turn chat. Con-
versely, the ring-based pass—KV approach, while reducing
the computation in smaller granularity, facilitates the over-
lapping of SendRecv with attention computations within the
ring loop.

We further make a modification to the ring pass—-KvV al-
gorithm (Liu et al., 2023) to better suit the partial prefill
use case in multi-turn chats. Here an invariant we need
to maintain for the ring algorithm is passing equal-sized
messages between CP ranks to adhere to collective commu-
nication interfaces. CP ranks hold different numbers of KV
embeddings as a result of multi-turn chat. Padding and de-
coding introduce slight variations in KV embedding length
per rank even though our load-balanced sharding distributes
KV embeddings evenly.

Assume we have N CP ranks C' Py, C' Py, ..., CPn_1 with
cached KV lengths of Py, ..., Pn_1, and partial prefill new
tokens of length 7. We pass KV embeddings of length
maxo<;<n(P;) + [T/N] around CP ranks in a ring (Fig-
ure 3), where [T/N] indicates the lengths of load-balanced
sharding (Section 3.5.1) of T tokens over N ranks.

For fused variable sequence lengths (Varseq) partial prefill
of B sequences in one batch, assume we have sequences
SOPY,TY),...,SB=1(PB=1 TB-1). The i-th sequence
S% has P’ cached KV embeddings, T" new prefill tokens,
with P/ cached tokens and T new tokens sharded to CP
rank j. We have Algorithm 2 for a ring pass—KV partial
prefill with fused inputs for CP over N hosts. KV’ indicates
key and value embeddings received from rank & which is
originally allocated to rank s.

In the ring algorithm, Q%, Q embeddings sharded to rank

Algorithm 2 Fused Varseq Ring Pass-KV Partial Prefill

fori =0to B—1do
Li max0§j<N(P]’? + sz)

end for

// On CP rank k

KV} + concatB! (pad(P} + T}, LY))

Qr, + concatZ N (T})

p< (k—1) mod N

forj =0to N —1do
s+ (k—j) mod N
Rank k sends K'V}] to next rank
Rank k receives KV from previous rank
Compute O}, < GQA(Qw, KV}?)
KV« KV

end for

Compute Oy, < merge’ ' (05)

k, need to attend to all key and value embeddings sharded
to all ranks: KVy, KV4,..., KVx_1. The attention com-
pute between ()}, and KV} is overlapped with SendRecv for
KV;_4 from a neighbor rank. We pass KV inaring N —1
times and each rank executes N partial attention compute.

At the end of the ring algorithm loop, each CP rank £ will
have the attention output of Oj with s = 0,1,..., N — 1,
where Oj, denotes the attention output from ), and K'V'*
(key and value embeddings originally sharded to rank s, see
bottom of Figure 3). We then apply a merge attention opera-
tor (Juravsky et al., 2024) to get the result of (), interacted
with all KV embeddings across CP ranks (See Appendix B,
Equation (4)).

3.5.3 Ring Pass-Q Algorithm

Passing Q embeddings around while keeping K and V em-
beddings stationary will have partial attention results scat-
tered across CP ranks. We need to have another round
of collective communication over CP process group to re-
store the partial outputs to the original source rank. Fol-
lowing the notations of ring pass—KV algorithm in Section
3.5.2, we have Algorithm 3 for ring pass—0Q attention (Fig-
ure 4). Similarly, Q7 indicates a Q embedding received
from rank &£ which was initially allocated to rank s. Note
that with pass—Q we have the guarantee that all CP ranks
have the same embedding lengths for query as a result of
load-balanced sharding (Section 3.5.1).

AlI2All for partial attention outputs is on the critical path and
therefore introduces an additional communication overhead
apart from the communication for passing query embedding.
The analysis for overlapping query embedding and attention
in Equation (2) and (3) only applies to the ring communica-
tion. The heuristics in Algorithm 1 for switching between
pass—-KV and pass—-Q doesn’t take AlI2All latency into
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Step 1 Step 2

CP rank0

) sendRecvikva
(ERLI|

Attn(QO, KV0)
Attn(QO, KV1)

CP rankl CP rankl

CP rank0

RO}
ELES

Attn(QO, KV0)

VZ

Attn(Q1, KV1)
Attn(Q1, KV2)

T SendRecv(KV3)

SendRecv(KV1

V3
Attn(Q3, Kv3) | SendRecv(KVO)  Attn(Q2, Kv2)
Attn(Q3, KVO0) Attn(Q2, KV3)

Attn(Q3, KV3) Attn(Q2, KV2)

CP rank2

CP rank3

CP rank2

CP rank3

CP rank0 CP rankl

( N ()
% R
(V)

Attn(QO, KVO0) Attn(Q1, KV1) merge
merge Attn(QO, KV1)
attn Attn(QO, KV2)

Attn(Q1, KV2) attn
Attn(QO, KV3)
-

Attn(Q1, KV3)

Attn(Q1, KVO)
AN J

CP rank3 CP rank2

e N\ (e )
[(RZ ]
vz ]
merge| | awn(Q3, kv3) Attn(Q2, Kv2) | | merde
attn Attn(Q3, KVO) Attn(Q2, KV3)
Attn(Q3, KV1) Attn(Q2, KVO)

Attn(Q3, Kv2) Attn(Q2, KV1
?) U n(Q: ))

Figure 3. Ring Pass-KV Attention with 4 CP ranks (CP4).

account’.

3.6 Ring Pass-Q Decode

With multi-turn prefill and decode, key and value embed-
dings of the decode tokens are also stored in the KV cache.
As decoding generates one response token at a time for each
sequence, each decode batch contains exactly one token
for each sequence in the batch. If context-parallel decode
consistently shards the decoding tokens of a sequence to one
specific rank, the rank that handles both decode and prefill
will encounter load imbalance issues: it will have longest
KV cache and out-of-memory (OOM) before other ranks
reach their KV cache capacity.

To ensure we utilize full KV cache capacity from all CP
ranks, we implemented batched ring pass-Q decode where
we offset by 1 index for each decode iterations and shard
batched decode evenly with round-robin. With exactly 1
token per sequence for decode, we pass Q rather than K and
V embeddings to minimize communication size (Equation
1). Algorithm 4 summarizes our CP decode algorithm with
the same notations used for prefill algorithms.

Similar to ring pass—Q prefill, we need to permute the
partial attention output order and communicate scattered
partial attention outputs back to the original source ranks.

3We present a refined algorithm in Appendix C and provide a
detailed time breakdown for validations in Table 5.
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Figure 4. Ring Pass-Q Attention with 4 CP ranks (CP4).
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Algorithm 3 Fused Varseq Ring Pass-Q Partial Prefill
// On CP rank k with KV},
Qy. + concatB M (T})
p+ (k—1) mod N
for)=0to N —1do
s+ (k—j) mod N
Rank k sends @7 to next rank
Rank k receives (), from previous rank
Compute OF < GQA(Q5, KVy)
Qi < Qp
end for
Permute {OF} N and AlI2All to recover {05} "
Compute Oy, < mergel '(O5)

4 EXPERIMENTS
4.1 Experiment Setup

We used Llama3 405B model with row-wise quantized FP8
weights (Llama Team, 2024) for feed forward layers after
GQA. Llama3 405B is a dense transformer model with
126 transformer layers, 16384 model dimension, 128 query
heads, and 8 key and value heads (Table 9).

We ran our performance benchmarks on the Grand Teton
platform (Meta Engineering, 2022), where each host has 8
Nvidia H100 GPUs fully connected with NVLink (“host”
and “node” are interchangeable in the subsequent text).
Each H100 GPU is equipped with 96GB HBM2e with 2.4
TB/sec peak memory bandwidth. We tested on two subtypes
of Grand Teton platforms: Grand Teton Training (GTT) and
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Algorithm 4 Batched Ring Pass-Q Decode
// On CP rank k with KV}, query @y, batch ids bidy,
p+ (k—1) mod N
for)=0to N —1do
s+ (k—j) mod N
Rank k& sends @7, bidj, to next rank
Rank & receives @2, bid; from previous rank
Compute OF < GQA(Q3, KV [bid5])
Q.+ Q5
bidj, < bid,,
end for
Permute {O*}Y"" and AlI2All to recover {05} !
Compute Oy, < merge’ *(05)

CP node 1 CP node 2

rank0: KVO <€«——— rank8: KVO

rank1: KV1 rank9: KV1

rank2: KV2 <€«——— rank10: KV2

cp group 1: (0,8)
cp group 2: (1,9)

ranks: KV3 cp group.)us: (7,15)
rank4: KV4 rank12: KvV4

rank5: KV5

rank6: KV6 rank14: KV6

rank7: KV7 |

Figure 5. Context parallel across nodes and tensor parallel within
nodes, with 2 CP ranks (CP2).

Grand Teton Inference (GTI). GTT hosts are inter-connected
with backend RDMA network with 400 Gb/s per GPU, and
GTT hosts are inter-connected with frontend network over
TCP/IP with 100 Gb/s per GPU.

With row-wise FP8 quantization“, the entire 405B model
fits into one node with TP8 (tensor parallelism across 8 par-
titions) partitioning. Each GPU holds 1 KV head and 16
Q heads, and feed forward layers are partitioned with alter-
nating column and row parallelism (Shoeybi et al., 2019).
Flash Attention 3 (Shah et al., 2024) is adopted for attention
kernels in prefill, while Flash Decoding (fla) with number
of K/V splits 256 is used during decoding.

We tested full prefill, partial prefill, and decode performance
with context parallelism over 1-16 nodes. Within each CP
node the model is partitioned with TP8 over 8 GPUs. We
form one CP communication group per KV head, with each
CP group consisting of N GPUs (one GPU in each node)
holding the same KV head in their respective tensor parallel
groups. Ring communication around CP ranks is imple-
mented an 8-way SendRecv (Figure 5).

*nttps://github.com/pytorch/FBGEMM/tree/
main/fbgemm_gpu/experimental/gen_ai

4.2 Context Parallel Prefill Scaling
4.2.1 Latency Reduction with Fixed Context Length

Llama3 405B model supports a maximum of 128K context
window, which is equivalent to 300-400 pages of books. We
used max batch size 1 and tested how the full prefill latency
for context lengths 2K to 128K vary with respect to the
addition of more CP nodes.

Figure 6(a) shows the full prefill latency of pass—-KV full
prefill on GTT and GTT for 1-8 CP nodes. With sufficiently
large context lengths, the latency for passing key and value
embeddings are overlapped with attention compute, and
we get proportional latency reduction with more CP nodes:
latency for the same input length is halved as we double the
number of CP nodes. Specifically, with CP8 on GTT, an
FP8 Llama3 405B model can process a 128K token prefill
in 5.85 seconds.

For GTI systems with much lower inter-host bandwidth over
frontend TCP/IP network, we observe the same scalability
with up to 4 nodes. Inspecting the GPU trace from GTI, we
found the achieved bandwidth for inter-host communication
is roughly 3GB/s per rank, which is still enough to over-
lap the pass—KV communication with attention compute,
demonstrating the robustness of pass—KV algorithm even
with low inter-connect bandwidth.

4.2.2 Comparing with Multi-Node Tensor-Parallel

To compare with context-parallel performance, we bench-
marked tensor-parallel over multiple nodes on GTT with up
to 8 nodes. Llama3 405B model has 8 KV heads. To effec-
tively parallelize 8 KV heads across more than 8 GPUs, we
replicate each KV head over Nyp /Ny GPUs where N p
is the total number of GPUs in the tensor parallel group
and Ngvy is the number of KV heads. Query heads are
distributed evenly to all GPUs with Ny /N7p query heads
per GPU. Computation is still fully parallelized over Nz p
GPUs.

We calculate scaling ratio for a paralellization across N
nodes as as 71 /7y, where Ty is the latency for N nodes
to process a 128K context prefill. Better parallelization
algorithms would have scaling ratios closer to V.

Figure 7 illustrates the scaling ratios for multi-node tensor
parallelism compared to context parallelism across 1 to 8
GTT nodes. Tensor-parallel becomes more bottlenecked by
inter-host communication with the growth of capacity, as
AllReduce latency increased significantly with the addition
of more nodes. While the latency is different by roughly
15% between CP2 and TP16 on 2 nodes, the difference
drastically increases to 100% when scaled to 8 nodes.

This evaluation is performed on H100 hosts which exhibit
significantly lower inter-host bandwidth compared to intra-
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Figure 6. Llama3 405B pass—KV full prefill latency.

host badwidth. For future GB200 (nvg) with NVLink con-
necting multiple hosts, tensor parallelism can still benefits
with reasonable scalability.

4.2.3  Scaling Context Length with Fixed Capacity

By partitioning the KV cache across CP ranks, we also
enhance the KV cache capacity as more CP nodes are added.
To demonstrate scalability in terms of both capacity and
latency, we run up to 1M context prefill over 8 and 16 GTT
nodes. This corresponds to approximately 1 hour of video
content. With a 16-node setup, we achieve an exact prefill
in 77 seconds for a 1M context length and 3.8 seconds for a
128K context length (Figure 8). The quadratic increase in
attention latency with context length begins to dominate the
overall time to first token (TTFT) latency, resulting in more
than 2x increase in TTFT with a 2x increase in context
length for > 512K token prefill.

We calculate the FLOPS utilization of a 1M context length
on 16 nodes in Appendix A. The achieved FLOPS is 502
TF/sec per H100, compared to a standalone Flash Attention
v3 benchmark performance of 540 TF/sec for 8K context
length (1M over 128 H100 GPUs) on a single GPU, resulting

A TP CP - passkKV = Perfect Scaling

Scaling Ratio
»

2 4 6 8

Number of Nodes (N)

Figure 7. Scaling ratio (latency with one node over latency with N
nodes) of context parallel vs. multi-node tensor parallel.
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Figure 8. TTFT of 128K-1M context with 8 and 16 CP ranks (CP8
and CP16).

in a 93% parallelization efficiency. Considering the peak
FLOPS on the specialized H100 configurations, we achieve
approximately 63% FLOPS utilization.

4.2.4 Pass-KV vs. Pass-Q Partial (Persistent KV) Prefill

The persistent KV cache provides substantial advantages in
long-context LLM inference by minimizing repeated com-
putational overhead in multi-turn conversations. In Table 4,
experiments with a 128K context length on 4 GTT nodes
demonstrated that, in both pass—-KV and pass—-Q imple-
mentations, TTFT latency is linearly proportional to the
persistent KV cache miss rate (HLP).

Figure 9 compares pass—KV and pass—0Q in terms of the
KV cache miss rate. When the KV cache miss rate is less
than 5%, pass—Q exhibits better latency; however, when
the miss rate exceeds 5%, pass—KV achieves lower latency.

The tipping point between pass—0Q and pass—KV occurs
at T = 6400 (5% KV cache miss rate). Table 5 details
the time breakdown for cache miss rates slightly below
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Table 4. TTFT (in ms) for pass—KV vs. pass—Q varying P and
T with P + T = 128000, on 4 CP ranks (CP4). P: length of
existing tokens in the KV cache, T": length of new tokens.

P T Miss RATE | pass-KV | pass—Q
126720 1280 1.00% 1023.39 898.71
124800 3200 2.50% 1110.18 1046.43
123840 4160 3.25% 1298.92 1280.1
121600 6400 5.00% 1305.56 1302.01
115200 | 12800 10.00% 2080.67 2205.27
102400 | 25600 20.00% 3353.02 3617.02
89600 38400 30.00% 4629.23 4922.52
76800 51200 40.00% 5745.08 6217.83
64000 64000 50.00% 6845.21 7367.99
51200 76800 60.00% 7890.35 8468.66
38400 89600 70.00% 8697.27 9666.62
25600 | 102400 80.00% 10105.78 | 10652.39
12800 | 115200 90.00% 11136.4 11571.62

0 128000 100.00% 11462.15 | 12360.57
JREL
8105
£

%1.00
7
£ 095
% 000
0.85
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KV cache miss rate (%, T/(T + P)) in log scale

Figure 9. pass—KV / pass—Q speed ratio of 128K context with
persistent KV cache miss rate, varying P and T with P + T =
128000, on 4 CP ranks (CP4).

and above this configuration (2.5% and 10% miss rate).
SendRecv and ATTN represent the SendRecv time and the
partial attention compute time (in ws) for each iteration of
the ring algorithm loop, which is repeated N — 1 times.
The AlI2All time refers to the communication required in
the merge attention step at the end of pass—Q algorithm.
Note that for 7' = 3200, the sum of exposed pass—-KV
communication ((N — 1)- (SendRecv - ATTN)) is longer
than pass—Q AlI2All, resulting in better performance for
pass—Q compared to pass—KV.

We further validate the analytical model in Algorithm 1 for
predicting the selection of pass—KV vs. pass-0Q from
Table 4.

¢ When the KV cache miss rate exceeds 12.5% (= 2 -

BV in Equation 1), pass—KV is always selected,

meeting the 2nd condition in Algorithm 1.

Table 5. Time breakdown (in ps) on pass—KV vs. pass—Q ring
attention at cache miss rate of 2.5% and 10% with P + T =
128000, on 4 CP ranks (CP4).

Miss Rate | pass—KV/Q | SendRecv ATTN AlI2All
2.5% pass—-KV 627 414 N/A
070 pass—0Q 166 414 424
pass—KV 631 1608  N/A
10% pass—Q | 54 1608 1023

Table 6. TTFT / TTIT (in ms) comparisons between TP8 and CP2
with different context lengths at batch size 1.

TPS CP2+TP8
Contextlength | wrer “prpp | TTET - TTIT
8K 1740 44.51 999 65.61
32K 7658  44.64 | 4015  65.66
128K 42010 46.26 | 21042 66.63

e At 10% KV cache miss rate, pass—KV remains the
choice since the number of new tokens 7' is sufficiently
large, satisfying Equation 2 (with SendRecv hidden
under ATTN in Table 5).

e Around 5% cache miss rate (e.g., 7' = 6400), the
differences between pass—KV and pass—Q is less
than 1%, allowing for either option to be selected.

* When cache miss rate falls below 3.25%, pass—-KV
communication becomes exposed, leading to the se-
lection of pass-Q. Specifically, at a 2.5% cache
miss rate, the sum of the exposed communication in
pass—KV ring loop is larger than AlI2All exposed in
pass—0Q (Equation 5, Appendix C), resulting in the
selection of pass—Q.

4.3 Decode Performance

Inference decode generates one output token at a time, re-
sulting in a small amount of computation workloads and
communication traffic. To avoid host kernel launch bot-
tlenecks for these small kernels, we run both CP and TP
decode with CUDA Graphs (Nvidia Blog, 2019).

Context Length Scalability: We benchmarked CP decod-
ing performance with 2 nodes on GTT (using ring pass—-0Q
decode algorithm in Section 3.6), and compare with TP8
decoding performance on 1 node using a single batch de-
code with various context lengths. As shown in Table 6, the
TTIT of both TP8 and CP2 does not increase too much: For
both TP8 and CP2, the computation and communication for
linear layers stay the same while the latency of attention
kernels increases with a longer context length.

Parallelism Scalability: We benchmarked different paral-
lelization configurations up to four CP nodes to observe the
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Table 7. TTFT / TTIT (in ms) comparisons between TP8, CP2,
TP16, CP4, TP32 with 128K context length at batch size 1.

TTFT TTIT

CP1+TPS8 42010 46.26
CP2+TP8 21042 60.23

TP16 29917 39.52
CP4+TPS8 10950 71.31
TP32 19841 47.3

Table 8. Attention scaling with the number of CP hosts (Time in
©s).

Context length 128K, batch size 1

TP8 | CP2+TP8 | CP4+TP8
Effective context length | 128K 64K 32K
Individual attention op 38.9 22.0 14.7
Attn (whole ring loop) 38.9 43.2 60.8
SendRecv 0 323 105.7
AlI2All 0 81.1 79.9
Whole pass-Q 38.9 157.7 238.6

Context length 32K, batch size 4

Effective context length | 32K 16K 8K
Individual attention op 60.1 13.9 9.6
Attn (whole ring loop) 60.1 24.5 41.3

SendRecv 0 333 104.9
AlI2All 0 66.8 72.2
Whole pass-0 60.1 136.6 180.6

scalability of both TP and CP. Table 7 shows that TTIT tends
to be longer for both scaling TP and scaling CP. TTIT for
scaling TP increases to 47 ms while TTIT for scaling CP
increases to 71 ms. Both TP and CP have poor scalability
for decoding when adding more hosts (e.g., using 4 nodes
can result in worse TTIT than using a single node). For
TP, lower computation latency on linear layers is offset by
increased communication latency increased.

For CP, as we increase the number of hosts, the effective
length seen by each attention kernel decreases, so each in-
dividual attention op becomes faster (Table 8). However
TTIT still degrates compared to CP=1, and the reason for
that is two-fold: (1) Current implementation pads the num-
ber of queries to make it divisible by the number of ranks,
which for B=1 means the total number of processed queries
increases with CP. (2) The communication latency - sending
Q chunks to the next rank at each iteration of the loop and
All2All-exchanging partial attention outputs after the loop -
also grows with the number of hosts. As a result, the total
pass—Q attention latency and TTIT increase with CP.

In summary, context parallel is best suited for improving
prefill performance and can be best leveraged with a serv-
ing system that decouples the parallelization scheme for

prefill and decode (Qin et al., 2024; Zhong et al., 2024).
For standalone deployment where prefill and decode are
both on the same set of hosts, CP drastically improves the
prefill latency, at the expense of decode latency regression
(Removing batch padding and better overlap of computation
and communication can help to minimize this regression).

S CONCLUSION

In conclusion, our work highlights the effectiveness of con-
text parallelism and ring attention variants in improving
the efficiency of LLM inference for long-context scenarios.
By leveraging up to 128 GPUs, we achieved near-linear
scaling and significantly reduced latency, completing tasks
with impressive speed and efficiency. Our implementation
of the lossless exact pass—KV and pass—Q ring attention
variants has been critical in supporting various full prefill,
partial prefill, and decoding scenarios. The runtime heuris-
tic adaptively selects pass—KV or pass—Q based on KV
cache hit rate, optimizing their application for the most
suitable scenarios.

As we keep improving LLM’s capacity to understand in-
creasingly longer and more complex context, one can expect
diminishing utility with exact attention over all historical to-
kens. More efficient algorithms for retrieving a small subset
of information from a much larger context to answer sim-
ple probe questions will be increasingly important. While
context parallel is an efficient exact algorithm for scaling
exact attention with more capacity, combining its processing
power with an approximate retrieval algorithm for ultra-long
context may be the best way to bound the processing latency
for context window growth at and beyond 1M.
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Table 9. Llama3 405B model configurations.

Parameter Value
Layers (#layers) 126
Model Dimension (D) 16,384
FEN Dimension 53,248
Attention Heads (V) 128
Key/Value Heads (Nkv) 8
Parameter Size (V) 405 B

A MFU CALCULATION FOR 1M CONTEXT
LENGTH

We calculate the effective Model FLOPS utilization
(MFU) (Chowdhery et al., 2023) in this section. The Llama3
405B model configurations are listed in Table 9. The total
FLOPS are dominant by GEMM and Attention parts:

Total FLOPS = GEMM FLOPS + ATTN FLOPS.

* For GEMM, an W-parameter Transformer model re-
quires 2 - W matrix multiplication FLOPs for each
token during inference:

GEMM FLOPS =2 x W x T x B.

* For Attention, the FLOPS is quadratic with respect to
the context length 7'

ATTN FLOPS = 1/2x 4 x B xT? x D x #layers,

where 1/2 is from the causal mask, 4 is from 2 batch
matmul and 2 FLOPS for multiplication and addition.

With input sequence length 7" = 1M, batch size B = 1, the
parameter size W = 4058, we can get GEMM FLOPS =
2 x 4058 x 1M = 8.1 x 10'7. With the model dimension
D = 16384, and number of layers #layers = 126, we
can derive ATTN FLOPS =1/2 x 1M? x 16384 x 126 =
4.1 x 10'8. Attention FLOPS is more dominant compared
to GEMM FLOPS. The total FLOPS is 4.9 x 10'8. With 77
seconds for 1M context length using 128 H100 GPUs, each
H100 achieves 4.9 x 10 /77/128 = 502 TF/sec. Note
that with the standalone Flash Attention v3 causal attention
benchmark using 8K context length on a single H100 (1M
context length sharded across 128 H100 GPUs), we achieve
540 TF/sec. One caveat for the evaluation is that GTT/GTI
(Section 4.1) are configured with power limited H100 GPUs
(500 Watt) with lower memory bandwidth (96 GB HBM2e
with 2.4 TB/sec instead of 80 GB HBM3 with 3.35 TB/sec),
where the BF16 peak for each H100 is 800 TF/sec, instead
of 989 TF/sec for H100 HBM3 with 700 Watt.

B MERGE ATTENTION

The idea of merging attention outputs from different

keys/values originates from Online Softmax (Milakov &
Gimelshein, 2018). Later this idea was reused in Flash At-

tention (Dao et al., 2022; Dao, 2023). Here we derive the
equation to merge the partial attention outputs from different
CP ranks.

The scaled dot production attention operates on
query/key/value tensors Q/K/V. For simplicity, we
don’t consider various mask like causal masks (no batching
or multiple attention heads either). There is one Q/K/V
corresponding to each sequence position. Q/K/V at a
given sequence position is a vector in the embedding space.
The attention output is defined as

T
O = Attn(Q, K, V) = softmax (Qz > V,

where softmax is applied row-wise.

Assuming the size of row is R,

0 = Xico exp?1 Ve,

explSE ’

where log-sum-exp LSE is defined as:

R—1
LSFE =log Z epr'KiT/‘/E.
i=0

In Section 3.5.2, we calculate the attention output and LS E
on each C'P rank k:

LSE}, O = Attn(Qg, KV?),

with s =0,1,...,N — 1 on CP rank k.

Similar to blocked softmax computation in Flash Atten-
tion (Dao et al., 2022; Dao, 2023) and the derivation process
in (Juravsky et al., 2024), we can get

N—-1 LSES — LS Emaz
0O x k k
0, — 2z (O @ exp -

N-1 LSE;—LSEM™e®
Zs:o e Xp k k

where LSE"* = max ' LSE}.

In this way’, we can combine attention output computed on
different chunks of K/V for the same query to get attention
on the whole K/V.

SMerge attention implementation is open sourced at
https://facebookresearch.github.io/xformers/
components/ops.html#module-xformers.ops.fmha.


https://facebookresearch.github.io/xformers/components/ops.html#module-xformers.ops.fmha
https://facebookresearch.github.io/xformers/components/ops.html#module-xformers.ops.fmha

Context Parallelism for Scalable Million-Token Inference

MAALE TS
\

-7

log(T/(T+P))

& 4

4

\

\

\
AY

wWY'\> V )

MAALE & 4
\

!
®

Pias
Prae
-
-

-10

-12

-14

Figure 10. A heuristic model using empirical data points. Green:
prefer pass—KV , Red: prefer pass-0Q

C ANALYTICAL MODEL SELECTION
CONSIDERING ALL2ALL

pass—Q merge attention requires an AI[2All (Section 3.5.3),
whereas in pass—KV merge attention only needs to merge
the partial attn results on local node (Section 3.5.2). When
pass—KV communication is exposed, we want to compare
the total of exposed pass—KV’s communication time to
the pass—Q’s all2all, which is the time to send partial
attention output and partial attention softmax log-sum-exp
(LSE) (Appendix B):

(D+1)-T-e

Latency(AlI2All) = (N — 1) - W

This means pass—Q has better prefill latency only if:

(N-1) (2(T+P)D-e~ e 4-T-D~(T+P)>
BW N.-C
(D+1)-T-e
BW ’
Assuming D =~ D + 1, through algebraic rearrangement,
we get:

> (N-1)-

Nkvy _4T-BW _ T
Ny N-C-e T+P

2 &)

Compared to (1), this shows that considering Al[2All de-
creases the KV cache miss rate threshold for selecting
pass—0Q.

Algorithm 5 is the adjusted heuristic algorithm to select
between pass—KV and pass—Q, considering AlI2All used
in merge attention in pass-Q .

Algorithm 5 Pass-KV vs. Pass-Q Partial Prefill Heuristics

if 7> N fione or s > 2. Jgv — ALBW then
pass-KV

else
pass-Q

end if

D HEURISTIC BASED ON EMPIRICAL DATA

For practical uses, we further establish a simplified heuristic
to choose between pass—KV and pass—Q based on em-
prical data points. Particularly we collected data points for
various combinations of 7" and T'/(T + P), and establish
an empirical formula:

h(T,P) = a-log(T) + - log (TﬁP) +

We prefer pass—KV when h evaluates to a positive value

and prefer pass—Q otherwise. We fit empirical data points
to this formula with parameters: & = —1.059, § = 1.145

and v = 12.112, as show in Figure 10. One way to inter-
pret the heuristic is that, for each particular 7', there is a
threshold for T'//(T + P) based on which we should switch
from pass—Q to pass—KV for best performances, and the
threshold increases as 71" increases.

Note that we do not expect the linear model to perfectly
capture all cases, so some misclassifications are present
due to variances and other factors, but the general trend is
obvious. We inspected the misclassified data points, and
they turned out to be the ones where the differences between
the two strategies were relatively small (< 1%). In practice
we can run this heuristic at the beginning of each round and
get the best of both worlds.



